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1 Introduction

Differential equations have been studied since 1675, following the invention of calculus
[42]. Since then, much effort has been devoted to the analytic study of differential equa-
tions and many analytic methods exist. However, it is only relatively recently that algebraic
methods have been developed, which can be used to study the geometry of a differential
equation, non-dimensionalise equations or find identifiable parameter combinations in
biological models algorithmically [35].

Much is known about polynomials and polynomial rings from abstract commutative
algebra and there is a rich computational theory which can be used to study given systems
of polynomials, in which Groebner bases play a central part [10, Chapter 2]. It is possible
to adapt and generalise these methods to the study of differential equations [39].

In section 2 we present the theory of differential algebra and consider some of the
implications for differential equations. In sections 3 and 4, we consider dynamical systems
and show how to efficiently compute scaling symmetries and reduced dynamical systems.
Finally, we give a novel extension of these algorithms to the scaling symmetries of arbitrary
systems of partial differential equations (PDEs) in section 5.

1.0.1 Differential Algebra

Differential algebra was started by Joseph Ritt in 1932 and his later book "Differential
Algebra" remains a key reference [39]. Ritt lays out his theory of differential polynomials,
differential rings and differential ideals - with an emphasis on explicit constructions and
algorithms. He goes on to define and examine the algebraic differential manifold, which
begins the study of the geometry of differential equations.

One of Ritt’s most influential students was Ellis Kolchin [38]. Indeed, in 1957 Irving
Kaplansky, another differential algebraist, described differential algebra as being 99%
the work of Ritt and Kolchin [16]. One of Kolchin’s major contributions was the book
"Differential Algebra and Algebraic Groups" [29]. In this work Kolchin also looks at
differential field extensions, taking inspiration from Galois Theory. He goes on to define
the differential analogue of the Zariski topology of affine space and describes differential
algebraic geometry. Finally, differential algebraic groups are introduced in the final chapter
of the book, which is used in the Galois theory of differential fields.

More recently, the constructions of Ritt and Kolchin have found applications in modern
computer algebra, for instance in automated reasoning and proof [16]. However, for larger
problems of interest to applied mathematicians the methods are too computationally
expensive for practical use [17], hence the motivation for this work and that of Hubert and
Labahn [26], which we extend. Other modern generalisations have included a schematic
approach to differential algebraic geometry: see [31] for an introduction.

1.0.2 Dynamical Systems and Non-dimensionalisation

In applied mathematics, particularly mathematical biology, most modelling involves the
analysis and solution of differential equations. The solution of such equations involves
variables (for example, concentrations) and parameters (for example, rate constants for a
reaction) which may need to be estimated or eliminated, depending on the analysis. Dif-
ferential algebra has been successfully applied to the problem of structural identifiability,
a pre-requisite for estimating the values of parameters from data [35].
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Generally, each variable or parameter has an intrinsic unit. For example: the concentra-
tion of a chemical species might be measured in moles per litre; the birth rate of a species
in a predator/prey model might be measured in number per year.

One of the very first steps in analysing these systems is to non-dimensionalise: the
process of turning the variables and parameters into dimensionless quantities, reducing
the complexity of the system. This removes the arbitrary choice of units, which introduces
a scaling symmetry; we could scale time so that it is measured in seconds or years while
not fundamentally changing the system.

Indeed, the Buckingham Pi theorem states that if we have n physical variables, each
expressed in some combination of m fundamental dimensions, then there are m funda-
mental variables and the remaining n −m variables can be expressed in non-dimensional
quantities [46, Section 5].

There are many benefits to non-dimensionalisation [18]:

• It reduces the number of variables and parameters, making the system easier to
analyse or solve analytically.

• Variables can be easier to interpret. For example, considering the ratio number of predators
number of prey

may be of more interest than the actual numbers themselves.

• Reducing the number of parameters vastly reduces the parameter space. Analysing
the solutions to a model by varying k1

k2
∈ R is much cheaper than analysing it over

k1 × k2 ∈ R2.

• Non-dimensionalising can help with model comparison. Population dynamics of
mammals and bacteria look very different over a series of days, but look very similar
after adjusting for lifespans.

Usually non-dimensionalisation is done by hand and is a skill practised over many
years. In addition to being cumbersome, there is no well defined method and superficially
different non-dimensionalised systems can be found.

Non-dimensionalisation is an example of reducing the number of scaling symmetries of
a system. More generally, variables of differential equations may exhibit extra symmetries,
which are integral to the system being modelled. Analytic methods of exploiting the
symmetry of an arbitrary Lie group action on the solutions to obtain reduced systems exist.
However, many of these techniques are not widely known in the physics and applied
mathematics communities [14, Chapter 16]. While we will not examine these, we will take
some guidance from them in later sections. Further reading on this topic can be found in
[13, 2, 36, 14, Chapter 16].

However these methods are computationally expensive for large systems, due to their
reliance on the algorithms of differential algebra. Herein lies the motivation for restricting
our attention to scaling actions - they are very efficient to find and exploit computationally.
Evelyne Hubert and George Labahn have demonstrated that in the case of finding scaling
symmetries it is possible to do so using only computationally efficient methods relying on
linear algebra over the integers [26]. It is their methods we present and expand upon in
sections 3 and 4.

First we show how non-dimensionalisation is currently done, by providing a motiva-
tional example, to highlight the value of an algorithmic approach.

Example 1.1. Consider question 2 from problem sheet 1 of the Part B course Further
Mathematical Biology [4].
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We consider the system of differential equations

ds

dt
= −k1e0s + (k1s + k−1)c (1)

dc

dt
= k1e0s − (k1s + k−1 + k2)c (2)

where s, c are the concentrations of two chemical species, s0, e0 are the initial concentrations
and k1, k−1, k2 are rate constants.

The first part of the question is to non-dimensionalise with the non-dimensionalisation:

u = s

s0

, v = c

e0

, λ = k−1

k1s0

, K = k−1 + k2

k1s0

, ε = e0

s0

, σ = k1s0t. (3)

This gives a new system:

du

dσ
= 1

k1s2
0

ds

dt
= −εu + εuv + λεv, (4)

dv

dσ
= 1

k1e0s0

dc

dt
= u − uv −Kv. (5)

This begs the question, how does one find a non-dimensionalisation of a system?
Let us forget the non-dimensionalisation given in equation (3). One way is to choose
non-dimensional quantities from the model. Clearly, s and s0 will have the same units,
so it is natural to consider s

s0
. This is how the first two non-dimensional variables of

equation (3) were found.
The more general ad-hoc method is as follows:

1. Identify the variables of your system. That is: s, c, t.

2. Rewrite them as the product of a scaling parameter and a dimensionless variable:

s = αu c = βv t = γτ (6)

where α,β, γ are the scaling parameters and u, v, τ are the new variables.

3. Substitute them back into the original equations:

du

dτ
= −k1e0γu + (k1u +

k−1

α
)βγv (7)

dv

dτ
= k1e0αγ

β
u − (k1αu + k−1 + k2)γv (8)

4. Choose the scaling parameters so that we remove as many constants as possible.
There is no one way to do this but often some ’natural’ choices will present them-
selves.

The term k1e0γu suggests that we should choose γ = 1
k1e0

. Equation (1) becomes

du

dτ
= −u +

(k1u + k−1

α )βv
k1e0

= −u + βuv
e0

+ k−1βv

k1e0α

which suggests the choice β = e0.
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We could then choose α = k−1

k1
, but instead we will look at equation (2) for a more

natural choice of scaling parameter. By natural, we mean that our original quantity
s represents a concentration and, while k1

k−1
has the same units after inspection, there

may be a more canonical choice.

Equation (2) becomes:
dv

dτ
= α

e0

u − k1αu + k−1 + k2

k1e0

v

which suggests a more natural choice of α = e0.

After gathering constants and defining:

λ = k−1

k1e0

µ = k2

k1e0

our final system of equations becomes:

du

dτ
= −u + uv + λv (9)

dv

dτ
= u − uv + (λ + µ)v (10)

The new system given by equations (9) and (10) is much simpler, involving fewer
parameters, than our original system. However, arbitrary choices were made and it
is clear non-dimensionalisation is non-unique; rational invariant theory will provide
an explanation in section 3.4.

2 Differential Algebra

Differential algebra is the study of differential rings, which are rings with extra structure:
a set of derivations. Many of the classical results from constructive ideal theory, commu-
tative algebra and algebraic geometry have useful analogues in differential algebra. In
this section, we give the definitions and theorems that will be needed later. We will also
give a brief description of some nice results which, while not needed for analysing scaling
symmetries of dynamical systems, will be familiar to algebraists and have consequences
for differential equations.

2.1 Definitions and First Results

For this section, proofs will generally be omitted when similar to their counterparts in
commutative algebra but will be included when instructive. See Ritt [39], Kolchin [29] for
the original constructions or [37, 28] for more modern treatments.

Definition 2.1. Let R be a ring. A map ∂ ∶ R → R is called a derivation if:

1. ∂(a + b) = ∂(a) + ∂(b) and

2. ∂(ab) = ∂(a)b + a∂(b)

for all a, b ∈ R.
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Definition 2.2. A differential ring is a pair (R,∆) with R a commutative unital ring and
∆ = {∂1, . . . , ∂m} a set of commuting derivatives ∂i ∶ R → R.

By saying that ∆ commutes, we mean that

∂i (∂j (r)) = ∂j (∂i (r))

for all 1 ≤ i < j ≤m.
If R is also a field, then we call R a differential field.
We will often denote the differential ring (R,∆) by just R.

Definition 2.3. If ∆ = {∂}, then we call R an ordinary differential ring. In this case, for x ∈ R
we also write the image under ∂ as

x′ ∶= ∂(x).

We also define x(n) ∶= ∂n(x). By convention, x(0) = x.

Theorem 2.4 ([28, Theorem 1.1]). Given a differential ring (R,∆), where R is also an integral
domain, we can extend each ∂i ∈ ∆ to the field of fractions F = Frac(R) as follows:

∂i (
a

b
) = (∂i a)b − a(∂i b)

b2

Furthermore this extension is unique. We will refer to (F,∆) as the field of fractions of
(R,∆).

Definition 2.5. The constants of a differential ring (R,∆) is the set

R∆ = {r ∈ R ∣ ∂(r) = 0 ∀∂ ∈ ∆}.

R∆ is then a sub-ring of R, or a sub-field if R is a field.

Example 2.6. Let ∂ ∶ R → R be a derivation. Then:

∂(1) = ∂(1 ⋅ 1) = ∂(1) ⋅ 1 + 1 ⋅ ∂(1) = 2∂(1)

which implies ∂(1) = 0. Furthermore, if Q ⊂ R then Q ⊂ R∆.

Example 2.7. Let r ∈ R, with R a differential ring. Since R is commutative, r and ∂(r)
commute and it can be easily shown by induction that:

∂(rn) = nrn−1 ∂(r)

Furthermore, we can extend ∂ to a derivation of R[x], the polynomial ring over R, by
choosing ∂(x) arbitrarily and extending by linearity and the Leibniz product rule.

2.1.1 Differential Polynomials

In classical commutative algebra, one of the most important constructions is the poly-
nomial ring R [x1, . . . , xn]. The corresponding construction in differential algebra is the
ring of differential polynomials R {x1, . . . , xn}. This is the set of polynomials in the xi and
their derivatives ∂e11 . . . ∂emm xi, together with the natural derivations. We give a formal
construction taking inspiration from [37, Section 2].

For the rest of this section, let Y = {y1, . . . , yn} be a set of n indeterminates.
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Definition 2.8. Let (R,∆) be a differential ring.

1. Let Θ be the free monoid on ∆:

Θ = {θ = ∂e11 . . . ∂emm ∣ ei ∈ N} .

We say that IdΘ ∈ Θ is the empty word. We say that the order of θ = ∂e11 . . . ∂emm is
e1 + . . . + em.

2. For s ∈ N we define

Θ(s) ∶= {θ = ∂e11 . . . ∂emm ∣ ei ∈ N,∑ ei ≤ s} .

3. We define
ΘY ∶= {yi,θ ∣ θ ∈ Θ, i = 1, . . . , n} .

Definition 2.9. The differential ring of polynomials over (R,∆) is the differential ring

(R{Y },∆) ∶= (R[ΘY ],∆)

with derivations extended to yi,θ by

∂i (yi,θ) ∶= yi,∂i θ

where ∂i θ is the concatenation in Θ.
The yi ∈ Y are known as differential indeterminates of R{Y }. The θyi ∈ Θ are known as

differentials.
For θ = ∂e11 . . . ∂emm , we will also write:

yi,(e1,e2,...,em) ∶= yi,θ = θyi

where yi,(0,...,0) = yi by convention.

Definition 2.10. Suppose that R is an integral domain. Then R{x} is an integral domain
and we can form its field of fractions. This is the set of rational differential functions and we
denote it by

R⟨Y ⟩ ∶= Frac (R{x}) .

Definition 2.11. By the degree of a differential monomial, we mean the algebraic degree
considered as an element of R[ΘY ].

The order (or degree) of a differential polynomial F is the maximal order (or degree)
over the monomials appearing in F .

Example 2.12. For instance, working in (C{y1, y2, y3},{∂1, ∂2}):

• y1 ∂1 y2 is a monomial of order 1, degree 2.

• (∂2
2 y1)(∂1 y2)y2

1 is a monomial of order 2, degree 4.

• ∂3
1 y2 + ∂2 y1 is a linear differential polynomial (degree 1) of order 3.
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2.1.2 Differential Ideals

Now we define differential ideals and quotients and note that the first isomorphism
theorem holds.

Definition 2.13. An ideal I ◁R of a differential ring is a differential ideal if a ∈ I ⇒ ∂ a ∈ I
for all a ∈ R, ∂ ∈ ∆. Equivalently, if ∂ I ∶= {∂ a ∣ ∀a ∈ I} ⊂ I for each ∂ ∈ ∆.

Given a subset S ⊂ R we define [S] to be the smallest differential ideal containing S.

Note ([29, Section 1.2]). Given a set of differential ideals {Ij}j∈J both ⋂j∈J Ij and ∑j∈J Ij
are differential ideals.

Definition 2.14. Let I◁R be a differential ideal. Then for ∂ ∈ ∆ we can define a derivative
on the quotient differential ring:

∂q(a + I) ∶= ∂(a) + I

This definition is independent of the choice of representative and gives us the quotient
differential ring (R /I,∆q), though we will drop the q in general.

Definition 2.15. Let (R,∆R), (S,∆S) be differential rings. A differential ring homomorphism
is a ring homomorphism ϕ ∶ R → S and map of sets ψ ∶ ∆R →∆S that are compatible:

ϕ(∂(r)) = ψ(∂)(ϕ(r)), ∀r ∈ R, ∂ ∈ ∆R .

The definition for a differential ring isomorphism follows analogously.

Theorem 2.16 ([29, Section 1.2]). Let ϕ ∶ R → S be a map between differential rings. Let
I = kerϕ. Then I ◁R is a differential ideal and

R /I ≅ im(ϕ).

Corollary 2.17 ([37, Corollary 2.2]). An ideal I◁R is a differential ideal if and only if (R /I, ∂)
is a differential ring.

Example 2.18. We briefly discuss how we describe differential rings and fields. If we have
a differential ring R and want to add an element y such that y′ = x for some x ∈ R, we can
formally construct our new ring as:

R{y}/[y′ − x]

in the same way we adjoin roots of polynomials in commutative algebra. That is,
√

2
satisfies t2 − 2, so if

√
2 ∉ R we have an isomorphism

R[
√

2] ≅ R[t]/(t2 − 2).

In the differential case, ex satisfies the differential polynomial y′ − y in a ring R, with ex ∈ R
and ∂ = d

dx . Hence we have
R[ex] ≅ R{y}/[y′ − y].

Note that this is equivalent to considering the ring R[y] and extending ∂ ∶ R → R by
∂(y) = y. When describing differential rings, we may use either convention.
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2.1.3 Radical Differential Ideals

Now we come to one of the first real differences in the theory of commutative algebra and
differential algebra: the importance of radical differential ideals. We will soon see that the
differential ideals of ’well behaved’ differential rings fail the ascending chain condition.
This suggests that if we want generalisations of results from commutative algebra, like
Hilbert’s Nullstellensatz or Noether’s Normalization Lemma, we will need to work with
something else: radical differential ideals.

Even a priori, this will not be overly restrictive when we come to generalise algebraic
geometry. Indeed, for k an algebraically closed field, we have a 1-1 correspondence

{algebraic subvarieties of kn} ↔ {radical ideals I ◁ k[x1, . . . , xn]}

so there is reason to hope differential algebraic geometry will still behave in a similar way
to regular algebraic geometry.

Definition 2.19. An ideal I ◁R is:

1. a prime differential ideal if it is a prime ideal and a differential ideal.

2. a radical differential ideal if it is a radical ideal and a differential ideal: I = rad I .

Lemma 2.20. The intersection of differential radical ideals is again a differential radical ideal.

Proof. The intersection of a set of radical ideals is radical and the intersection of a set of
differential ideals is a differential ideal.

Definition 2.21. Given a subset S ⊂ R, there exists a unique minimal radical differential
ideal containing S denoted by {S}.

Example 2.22 ([37, Example 1.11]). Constructing {S} is not always trivial. Recall that [S]
is the differential ideal generated by S. In general: {S} ≠ rad([S]).

Consider the ordinary differential ring R = Z2[x, y], with x′ = y and y′ = 0, and the
differential ideal I = [x2]. Since (x2)′ = 2xy = 0, it is clear that I = x2 R. If follows that
rad I = xR. However rad I = xR is not a differential ideal as x′ = y ∉ rad I .

The following example illustrates the difference between differential ideals and radical
differential ideals.

Example 2.23. Suppose I ◁R is a radical differential ideal and ab ∈ I for a, b ∈ R. Then for
each ∂ ∈ ∆:

∂(a)b, a ∂(b) ∈ I.

Note ∂(ab) = ∂(a)b + a∂(b) ∈ I so in particular a∂(b)∂(ab) = ab∂(a)∂(b) + (a∂(b))2 ∈ I .
As I is radical, (a∂(b))2 ∈ I ⇒ a∂(b) ∈ I . This generalises to:

a1a2 . . . an ∈ I ⇒ ∂(a1)a2 . . . an ∈ I

In contrast, if I is not radical, we only know that

∂(ab) = ∂(a)b + a∂(b) ∈ I.

From commutative algebra, we know that the radical of an ideal is the intersection of
prime ideals containing it. There is an analogous statement in differential algebra.
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Theorem 2.24 ([37, Theorem 1.2]). Let I ◁R be a radical differential ideal. Then there exists a
set of prime ideals {Pj}j∈J such that:

I = ⋂
j∈J
Pj

In commutative algebra, the radical of an ideal plays an important role when consid-
ering affine varieties. While the radical of a differential ideal is not always a differential
ideal, it is when we are working over a Ritt algebra [28, Chapter 1].

Definition 2.25. A Ritt algebra is a differential ring (R,∆) such that Q ⊂ R.

Lemma 2.26 ([28, Chapter 1]). Let I ◁R be a differential ideal of a Ritt algebra with a ∈ R such
that an ∈ I for some n ∈ N. Then (∂(a))2n−1 ∈ I for each ∂ ∈ ∆.

Lemma 2.27 ([28, Chapter 1]). Let I ◁R be a differential ideal of a Ritt algebra. Then rad I is
also a differential ideal.

Proof. Let a ∈ rad I , so an ∈ I for some n. By the previous lemma, (∂ (a))2n−1 ∈ I which
implies ∂ (a) ∈ rad I .

Corollary 2.28. For S ⊂ R, R a Ritt algebra, we have

{S} = rad([S]).

Lemma 2.29 ([37, Corollary 1.1]). Let I ◁R be maximal among proper differential ideals of a
Ritt algebra. Then I is prime.

Note ([37, Example 1.13]). Not all maximal differential ideals are prime in general. Con-
sider M = [x2] in R = Z2[x] with ∂(x) = 1. Then M is a maximal differential ideal but not
prime

2.1.4 Ritt-Noetherian Rings

Definition 2.30. We say that a set Z of ideals in R satisfies the ascending chain condition if
every chain (subset of Z totally ordered by inclusion) has a maximal element in the chain.

Example 2.31 ([7, Example 1.4]). The set of differential ideals of Q{x} does not satisfy the
ascending chain condition (ACC). The chain of differential ideals

[xx′] ⊂ [xx′, x′x′′] ⊂ [xx′, x′x′′, x′′x′′′] ⊂ . . .

does not stabilise.

Definition 2.32. We say that a differential ring R is Ritt-Noetherian if the set of its radical
differential ideals satisfies the ascending chain condition.

Theorem 2.33 (Ritt-Raudenbush, [37, Theorem 2.1]). If R is a Ritt-Noetherian differential
ring, then so is R{y}.

Proof. See [37, Theorem 2.1] for a proof using characteristic sets, which are introduced in
the next section. Alternatively, see [19, Theorem 3.23].

Corollary 2.34 ([37, Corollary 2.1]). For all radical differential ideals J of R = F{y1, . . . yn}
there exists a finite subset S ⊂ R such that J = {S}.

10



In particular, the solutions to any infinite set of differential polynomials in finitely
many differential indeterminates over a differential field are perfectly described by a finite
number of differential polynomials.

Lemma 2.35 ([37, Theorem 2.2]). If R is a Ritt-Noetherian Ritt algebra, then for every radical
differential ideal I there exists a finite set {P1, . . . Pk} of prime differential ideals such that:

I =
k

⋂
i=1

Pi.

2.2 Ritt-Kolchin Theory

In this section, we focus our attention on differential polynomials and the Ritt problem.
The Generalised Ritt Problem: Given finite subset W ⊂ F{y1, . . . , yn} of differential

polynomials, decompose the radical differential ideal {W} as an irredundant intersection
of prime differential ideals:

{W} = P1 ∩ P2 ∩ . . . ∩ Pr
The Ritt problem can be formulated in many equivalent ways [15] and remains un-

solved in general. However, it is possible to find a decomposition (not necessarily irre-
dundant) algorithmically [44]. The core algorithm for this decomposition is the Rosenfeld-
Groebner algorithm, introduced by Boulier et al.in 1995 [3], which decomposes a radical
differential ideal into an intersection of prime differential ideals and gives their corre-
sponding characteristic sets [44]. It is implemented in Maple as the ROSENFELDGROEBNER
function [34, 37, Section 4].

The Rosenfeld-Groebner algorithm should not be confused with the Ritt-Kolchin al-
gorithm. While the Ritt-Kolchin algorithm solves the same problem and precedes the
Rosenfeld-Groebner algorithm, it relies on the solution of the so-called factorisation prob-
lem: determine whether a given ideal is prime and, if not, find two polynomials lying
outside the ideal whose product lies in the ideal [15]. This is computationally expensive,
so has not been implemented [15].

The Rosenfeld-Groebner and Ritt-Kolchin algorithms, which work with characteristic
sets, should also not be confused with differential Groebner bases methods [33, 21, 1].

The Rosenfeld-Groebner algorithm has many uses [34]:

• Solving differential systems with an elimination ranking by putting the differential
equations in triangular form.

• Solving differential systems with an orderly ranking; finding the lowest order differ-
ential equations vanishing the solutions of a system. In particular, it may be possible
to find purely algebraic constraints.

• Constrained systems: mixed ranking. It is possible to obtain equivalent systems of
differential equations that are unconstrained by eliminating any constraints.

• Solving PDEs: lexicographic ranking. It is possible to derive ODEs from PDEs - a
process that has applications in determining Lie group symmetry.

• Simplifying systems of differential polynomials: it can remove any polynomials
from a system that can be derived from the others.
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For an excellent in-depth tutorial on these algorithms see [44, 29]. For a comparison
of some of these algorithms see [1]. Furthermore, a modern summary with a focus on
symbolic computation can be found in [45]. For an example application - automatically
deriving Newton’s gravitational laws from Kepler’s laws - see [48].

2.2.1 Definitions and Basic Theory

For the rest of this section, let (F ,∆ = {∂1, . . . , ∂m}) be a differential field, where F is of
characteristic 0. Let

R = F{Y }

be the polynomial ring in n differential indeterminates, where Y = {y1, . . . , yn}.
Definitions in this subsection are taken from [37, Section 2.2].

Definition 2.36. A differential ranking <R on ΘY is a well-ordering (a total ordering where
every non-empty subset has a least element) such that:

1. For all u, v ∈ ΘY and ∂ ∈ ∆:
u<R v⇒ ∂ u<R ∂ v.

2. For all θ ≠ IdΘ:
u<R θu.

For the rest of this subsection, fix a differential ranking <R on ΘY .

Definition 2.37. 1. The leader of a differential polynomial F ∈ R is uF , the largest
differential θyj that appears in F with respect to <R.

2. The initial of F is IF , the leading coefficient of F when written as a univariate
polynomial in the leader uF :

F = IFupF + ap−1u
p−1
F + . . . + a0.

3. The separant of F is SF ∶= ∂F
∂uF

.

Definition 2.38. For F,G ∈ R we say that F is partially reduced with respect to G if none of
the terms of F contain a proper derivative of uG.

We say that F is reduced with respect to G if it is partially reduced with respect to G
and if uF = uG then deguF (F ) < deguG(G).

We say that a subset A ⊂ R is autoreduced if for all F,G ∈ A with F ≠ G then F is reduced
with respect to G.

Lemma 2.39 ([29, Section 1.9]). Every autoreduced set is finite.

Now we introduce an ordering on autoreduced sets, so that we can introduce minimal
autoreduced sets [37].

Let A = {A1, . . . ,Ap},B = {B1, . . . ,Bq} be autoreduced sets.
Given <R, we define a partial order < on the differential polynomials: F < G if uF < uG,

or if uF = uG and deguF (F ) < deguG(G).
We can order the Ai by <, as it is a total order on autoreduced sets. We also order the

Bj . We compare A and B by comparing Ai and Bi, starting from i = 1, declaring the largest
(as a set) the smaller autoreduced set if we run out of pairs.

In particular, A < B if:
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1. there exists i ≤ min(p, q) such that Ai < Bi and ¬(Bj < Aj) for j < i, or

2. q < p and ¬(Bj < Aj) for i = 1, . . . ,min(p, q).

Definition 2.40. Let I ◁R be a differential ideal. A minimal autoreduced subset of I is
called a characteristic set.

Lemma 2.41 ([1, Theorem 5.10]). Every set S ⊂ R has a characteristic set.

Definition 2.42 ([44, Definition 6.1]). A partial remainder of F ∈ R with respect to a
nonempty autoreduced set A is a differential polynomial F̃ , partially reduced with respect
to A, such that there exist a ∈ A,ma ∈ N such that

∏
a∈A

Sma
a F − F̃ ∈ [A],

where Sa is the separant of a ∈ A.

2.2.2 Algorithms

Algorithm 2.43 ([44, Procedure 6.3]). Ritt-Kolchin’s Partial Remainder Theorem
Input A differential ranking, a non-empty autoreduced set A ⊂ R and F ∈ R.
Output F̃ , a partial remainder of F .

Algorithm 2.44 ([44, Section 10]). Rosenfeld-Groebner
Input A differential polynomial ring R = F{Y }, with charF = 0 and ∣Y ∣ < ∞, a ranking on

ΘY and a non-empty finite set W ⊂ R.
Output A finite, possible empty, set A of autoreduced sets of R such that:

1. for each A ∈ A, there exists a prime differential ideal PA with characteristic set A;

2. {W} = ⋂A∈APA.

Using algorithm 2.43, it is also possible to test ideal membership, using the character-
istic sets of each PA [1, Section 5]. For details of the Rosenfeld-Groebner algorithm, see
[3, 21, 44]. We leave out the details of these two algorithms and discuss their uses instead.

2.2.3 Examples

Example 2.45. Consider example 1.1, our non-dimensionalisation example, given by:

ds

dt
= −k1e0s + (k1s + k−1)c,

dc

dt
= k1e0s − (k1s + k−1 + k2)c.

The output with respect to the elimination ranking s<R c is:

c =
ds
dt + k1e0s

k1s + k−1

,

d2s

dt2
=

(ds
dt
)2
k1 + (−k2

1s
2 − k1 (k2 + 2k−1) s − k−1 (k1e0 + k2 + k−1)) dsdt − e0k1k2s (k1s + k−1)

k1s + k−1

.

This results in a differential equation for s and an exact solution for c as a function of s
and ds

dt .
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Example 2.46. Maple’s ROSENFELDGROEBNER is very sensitive to the ranking. Consider
the system described by:

(dx
dt

)
2

− x (x + y) = dy
dt

+ y (x + y) = (d
2x

dt2
)

2

+ d
2y

dt2
− 1 = 0.

With an elimination ranking x<R y, ROSENFELDGROEBNER algorithm terminates
within a couple of seconds, indicating the system is inconsistent and no solution ex-
ists. However the ranking y <R x terminates after 6 minutes producing an ’out of memory
error’. 1

2.2.4 Symmetries of Partial Differential Equations

We very briefly sketch out how the Rosenfeld-Groebner algorithm is used to find all
Lie symmetries of a system of partial differential equations, using [36, Section 3]. See
[6, 41, 27, 36] for more details or [32] for an exemplary symmetry analysis of Burgers’
equation.

Let u = (u1, . . . , un) be a set of dependent variables, x = (x1, . . . xm) be the set of
independent variables and Fl (xi, uj, d

kuj
dxki

) for k ≤ N ∈ N be functions defining the system
of PDEs. We search for infinitesimal 1-parameter symmetries of the form:

x̃i = xi + εξi(x,u),
ũj = uj + εηj(x,u)

where ε is the infinitesimal parameter. The infinitesimal generator associated with this
transformation is

X =
m

∑
i=1

ξi(x,u)
∂

∂xi
+

n

∑
j=1

ηj(x,u)
∂

∂uj
.

Then the system of PDEs admits the scaling symmetry described by X if and only if

(X(N)Fl)(xi, uj,
dkuj
dxki

) = 0 when Fl (xi, uj,
dkuj
dxki

) = 0

for each l, where X(N) is the N th prolongation of X [36, Section 3].
This leads to an over-determined system of linear differential equations, called the

determining equations, in terms of the ξi, ηj and their partial derivatives [36, Section 3]. Now
the Rosenfeld-Groebner algorithm is used to simplify this system and put it in a triangular
form, so that the Lie group describing the symmetries can be found. For large problems,
this is computationally expensive.

2.3 Differential Algebraic Field Extensions

For the rest of this subsection, let (F ,∆) be a differential field of characteristic zero.

Definition 2.47. Let F ⊂ U be an extension of differential fields. Then a ∈ U is called differ-
entially algebraic over F if there exists a non-zero p ∈ F{y} such that p(a) = 0. Equivalently,
a is differential algebraic if {a, a′, a′′, . . .} is algebraically independent over F .

1Experiments performed using Maple 2016.0 running on Ubuntu 16.04.2 LTS.
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Example 2.48. Consider F = R(t), U the field of all infinitely differentiable functions in t.
Then y = et ∈ U is differentially algebraic over F but algebraically independent. Further-

more, any polynomial f in t is also differential algebraic over F , since ∂n+1
t f = 0 for n the

degree of f [37, Example 3.2]. The gamma function Γ(t) = ∫
∞

0 xt−1e−xdx is not differentially
algebraic over F [19].

Definition 2.49. A differential field extension F ⊂ U is differentially finitely generated if there
exists a1, a2, . . . , an ∈ U such that:

U = F⟨a1, . . . an⟩ ∶= Frac (F{a1, . . . , an}) .

The notion of being differentially closed is similar to the notion of being algebraically
closed. The construction is non-trivial and brings together model theory and differential
algebra [7].

Definition 2.50. 1. Let f1, . . . , fr, g ∈ F{y1, . . . , yn} be polynomials of positive degree.
The system

f1 = . . . = fn = 0, g ≠ 0

is consistent if there exists a differential field extension F ⊂ U and a ∈ Un such that

f1(a) = . . . = fn(a) = 0, g(a) ≠ 0

2. A differential field F is differentially closed if every consistent system of differential
polynomials and inequations has a solution in Fn.

Definition 2.51. A set ∆ is independent over F if there exist a1, . . . , am ∈ F such that the
m ×m matrix

(∂i aj)

is non-singular.

Theorem 2.52 ([37, Theorem 3.2]). (Primitive Element Theorem for Differential Algebra) Let
F ⊂ U be a differentially finitely generated differential algebraic field extension. Suppose ∆ is
independent over (F ,∆). Then there exists a ∈ U such that

U = F⟨a⟩

Example 2.53. Consider F = R ⊂ R⟨t, et, ln t⟩ = U where the derivation is given by ∂ = d
dt .

We show U is differentially generated by tet ln t. Let L = R⟨tet ln t⟩ so clearly L ⊂ U .
Now d

dt (tet ln t) = et ln t + tet ln t + et ∈ L so et ln t + et ∈ L. Differentiating again we see
(et ln t + et)′ = et ln t + et

t + et ∈ L. Subtracting the previous two quantities gives et

t ∈ L.

Differentiating and subtracting again gives et

t −
et

t2 ∈ L and et

t2 ∈ L. Hence
et

t
et

t2

= t ∈ L. Finally,

t e
t

t = et ∈ L and ln t ∈ L so U ⊂ L.

2.3.1 Differential Galois Theory

The study of differential algebraic fields extends naturally to a Galois theory of differential
equations. Though we will not go into detail here, we will briefly describe some of the
results of the area.

Differential Galois theory can be used to prove that some differential equations have
no solutions that can be written in terms of ’elementary’ functions, such as the Γ function
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discussed previously, or u′ = e−x2 whose solution is the error function used in statistics [47].
This is done in an analogous way to algebraic Galois theory: a differential field extension
F ⊂ U is called a Liouville extension if U can be built up by adding a finite sequence of
generators α ∈ U such that α′ or α′

α is in the previous differential field. The differential
Galois group of a Liouville extension is always solvable and certain converses also hold
[11, Section 6].

Furthermore, it is also possible to derive closed form solutions in the same way the
quadratic, cubic and quartic formulae exist for polynomials. In 1986 Jerald Kovacic [30]
published a celebrated algorithm for finding the ’differential quadratic equation’. In
particular, the algorithm found closed form solutions of

y′′ + a(t)y′ + b(t) = 0

for a(t), b(t) rational functions of the complex independent variables t. For modern
summaries, see [19, 37, 11, 7].

2.4 Differential Algebraic Geometry

While Ritt had already studied the "differential manifold" of a system of differential
equations [39, Chapter 2] and used it to study its "components", it was his student Kolchin
who introduced the differential version of the Zariski topology: the Kolchin topology
[29, Chapter 4]. We give the details here, largely following Cassidy’s more modern
introduction [7].

For the rest of this subsection, let F be a differential field of characteristic 0, equipped
with a set ∆ = {∂1, . . . , ∂m} of differentials. Let U be the differential closure of F (or, more
generally, any differential field extension). Finally, let R = U{y1, . . . , yn}.

Definition 2.54. For V ⊂ Un, define the set of all differential polynomials vanishing on V
to be the ideal

I(V ) ∶= {f ∈ R ∣ f(v) = 0∀v ∈ V }◁R .
For I ⊂ R define the vanishing set of I to be

V(I) ∶= {x ∈ Un ∣ f(x) = 0∀f ∈ I} .

A subset V ⊂ Un is called Kolchin closed (K closed) if there exists I ⊂ R such that
V = V(I).

Lemma 2.55. We list some immediate properties of V and I .

1. V and I are order reversing: I ⊂ J ⊂ R⇒ V(J) ⊂ V(I) and U ⊂ V ⊂ Un⇒ I(V ) ⊂ I(U).

2. For a subset S ⊂ R, the vanishing sets of S and the differential variety generated by S are
identical:

V(S) = V([S]) = V({S})
Without loss of generality we work with ideals of R rather than arbitrary subsets.

3. Let I , J , {Ij}j∈K be ideals of R. Then:

V({0}) = Un; V({1}) = ∅; V(I + J) = V(I) ∩ V(J);

V(I ∩ J) = V(IJ) = V(I) ∪ V(J); V (∑
j∈K

Ij) = ⋂
j∈K
V(Ij).
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4. The Kolchin closed sets V ⊂ Un are the closed sets for a topology on Un.

Proof. Follows similarly to the corresponding properties of the Zariski topology, see [10,
Chapters 1, 4].

Definition 2.56. The topology on Un whose closed sets are the Kolchin closed sets is called
the Kolchin topology. By differential affine space, we mean Un equipped with the Kolchin
topology. We denote this topological space An

U .

While there is little difference in the definitions of the Kolchin and Zariski topologies,
they behave very differently.

Example 2.57 ([7, Section 1.1]). We know from Part B commutative algebra that every
Zariski closed subset in A1 is finite. However Q ⊂ V ([y′]) is infinite.

Theorem 2.58 ([7, Theorem 1.7]). (Ritt Nullstellensatz) If U is differentially closed, there exists
an inclusion reversing bijection between the Kolchin-closed subsets of An and the set of radical
differential ideals of U{y1, . . . , yn}, given by V and I .

Definition 2.59 ([19, Definition 6.1]). Let V be a Kolchin closed subset of An. The differential
coordinate ring of V is the differential ring:

U{V } ∶= U {y1, . . . , yn} / I (V ) .

3 Torus Actions

As discussed in the introduction and section 2.2.4, arbitrary symmetries are computa-
tionally expensive to find and exploit. This is why we restrict our attention to non-
dimensionalisation and scaling symmetries in general. In this section we discuss affine
groups, representations and the algebraic theory needed later.

For the rest of this section, let k be a field of characteristic 0, n ∈ N, An be the n-
dimensional affine space kn endowed with the Zariski topology.

3.1 Affine Algebraic Groups

Definition 3.1. An affine algebraic group is an affine algebraic variety G along with an
identity element e ∈ G, a composition map ○ ∶ G × G → G and an inverse map i ∶ G → G
satisfying the group axioms. We will write xy ∶= x ○ y and x−1 ∶= i(x) for x, y ∈ G. An affine
group action on a set Z is simply a G-action on Z.

Example 3.2 ([40, Section 8]). 1. Every finite group can be realised as a set of distinct
points.

2. (k,+) is an affine group.

3. SL(n,k), the n × n matrices of determinant 1, is an affine group. This is because the
determinant can be written as a polynomial D = det(aij) ∈ k[aij] in the n2 coefficients
of a matrix. Then SL(n,k) ≅ V(D − 1) ⊂ An2 .

4. (k∗, ⋅ ) is an affine group. We can construct an isomorphism k∗ → V(xy − 1) ⊂ A2

given by x↦ (x,x−1).

5. GL(n,k) ≅ V(yD − 1) ⊂ An2+1.
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Definition 3.3. The r-dimensional algebraic torus is the affine algebraic group:

T ∶= (k*)r
≅ V(x1x2x3 . . . xry − 1) ⊂ Ar+1.

The identity element is (1, . . . ,1) ∈ T and multiplication is given by ∗.
The isomorphism is given by (x1, . . . , xn) ↦ (x1, . . . , xn,

1
x1...xn

).

Definition 3.4. Given an affine variety X , we can define the coordinate ring of X to be:

k[X] ∶= k[z1, . . . , zn]
I(X)

where I(X) is the usual ideal of polynomials vanishing on X .
If X is an irreducible variety (⇔ I(X) is prime [40, Section 2.6]) then we denote the

fraction field of the coordinate ring by:

k(X) ∶= Frac k[X].

3.2 Matrix Notation for Scaling Actions

Now we consider the different actions of the algebraic torus T = (k*)r
acting on An, where

r, n ∈ Z. We represent the actions by full row rank matrices A ∈Mr×n(N). In order to do so
we introduce some notation from [26, Section 3].

Definition 3.5. For x = [x1 . . . xn], y = [y1 . . . yn] we define:

x ∗ y = [x1y1 x2y2 . . . xnyn]

to be component-wise multiplication.

Definition 3.6. Let a = [a1 . . . ar]T ∈ Zr be a column vector.
For λ = (λ1 . . . λr) ∈ T we define:

λa ∶= λa1
1 λ

a2
2 . . . λarr ∈ k∗

For λ = (λ1 . . . λr), a row vector of r indeterminates, we define:

λa ∶= λa1
1 λ

a2
2 . . . λarr ∈ k[λ1, λ

−1
1 , . . . , λr, λ

−1
r ]

Note. k[λ1, λ−1
1 , . . . , λr, λ

−1
r ] ⫋ k(λ1, . . . , λr) is a proper subring of the field of rational func-

tions.

Example 3.7. 1. For a = [ 3
−2

], λ = [6 3] then λa = 633−2 = 24.

2. For a =
⎡⎢⎢⎢⎢⎢⎣

2
−5
4

⎤⎥⎥⎥⎥⎥⎦
, λ = [x y z] then λa = x2y−5z4 and λ−a = x−2y5z−4.

3. For a =
⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦
, λ = [xy x2y−1 u + v] then λa = (xy)2(x2y−1)−1(u + v)1 = y3(u + v).

We then extend this definition to matrices.
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Definition 3.8. Let A = (aij) ∈Mr×n(N), λ = [λ1 . . . λr] where the λi could be indetermi-
nates or elements of k∗. We define:

λA ∶= [λA⋅,1 . . . λA⋅,n]
= [(λa1,1

1 λ
a2,1

2 . . . λ
ar,1
r ) (λa1,2

1 λ
a2,2

2 . . . λ
ar,2
r ) . . . (λa1,n

1 λ
a2,n

2 . . . λ
ar,n
r )] .

Lemma 3.9 ([26, Proposition 3.1]). Let A,B ∈Mr×n(N), C ∈Mn×n(N) and λ,µ be row vectors
with r components. Let A = [A1 A2] be a partition of A into columns. Then:

λA = [λA1 λA2] , λAC = (λA)C , (λ ∗ µ)A = λA ∗ µA and λ(A+B) = λA + λB.

Definition 3.10. Let A ∈Mr×n(Z). The torus group associated with A is TA ∶= (k*)r
. Then

the TA-action on An by A is the linear group action ⋅ ∶ TA ×An → An defined by:

(λ, z) ↦ λ ⋅ z ∶= λA ∗ z.

This is a well defined group action by the previous lemma. We will often drop the
subscript and write T when there is no ambiguity.

Definition 3.11. Since kn ≅ V(0), we can define a TA-action by A on the coordinate ring
k[An] = k [z1, z2, . . . , zn]. The action ⋅ ∶ TA ×k[z1, . . . , zn] → k[z1, . . . , zn] is defined by:

(λ ⋅ f)(z1, . . . , zn) = f(λ−1 ⋅(z1, . . . , zn)).

Example 3.12. It is important to remember the distinction between the action on points in
the topological space X and the action on the coordinate projection functions zi ∈ k[X].

Take A = [2] acting on A with coordinate ring k[z]. Let λ ∈ T. Then

λ ⋅ z = λ−2z

as for all points x ∈ A:

(λ ⋅ z)(x) = z(λ−1 ⋅ x) = z(λ−2x) = λ−2x = λ−2z(x).

3.3 Hermite Normal Form

We now introduce the Hermite normal form of a matrix. Over the integers this plays
the role of the reduced row echelon form, obtained by Gaussian elimination, over a field.
Hermite normal forms are very useful because information about the kernel of a map
A ∈Mm×n(Z) can be read off easily, such as its dimension and a basis.

The Hermite normal form is also useful because it is efficient to calculate: a key
advantage of considering scaling symmetries. We will see in section 4 that all of the
information we need to reduce a dynamical system can be read from two Hermite normal
form decompositions.

In this section we will deal only with column Hermite normal forms, which are
obtained by acting on the columns. However the row Hermite normal form can be formed
completely analogously by transposing each definition and proof.

Definition 3.13 ([20, Section 6]). A matrix A = (aij) ∈ Mm×n (Z) is said to be in column
Hermite normal form if:

1. the first r columns of A are nonzero;
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2. for 1 ≤ j ≤ r, if aijj is the first non-zero entry of column j, then i1 < i2 < . . . < ir;

3. 0 < aijj for 1 < j < r;

4. 0 ≤ aijk < aijj for 1 ≤ k < j ≤ r.

The pivot of each column is the first non-zero entry aijj .

Remark ([43, Section 4.1]). An equivalent definition would be: A has block form [H 0]
where H is lower triangular and each pivot row is non-negative with a maximal element
at the end of the row .

If A has full row rank, then A is in column Hermite normal form if and only if H is a
non-negative lower diagonal matrix where the maximum value of each row is found on
the main diagonal.

Definition 3.14. The elementary unimodular column operations are given by: exchanging two
columns; multiplying a column by −1; and adding an integral multiple of one column to
another. We also refer to these as column operations.

Lemma 3.15. 1. A can be brought into Hermite normal form by a finite sequence of column
operations on A [43, Theorem 4.1].

2. If A has full row rank then the Hermite normal form is unique [43, Corollary 4.2a].

Corollary 3.16. There exists a unimodular matrix U , called a Hermite multiplier of A, such
that H = AU is in Hermite normal form. This is because the elementary column operations are
equivalent to multiplication on the right by a unimodular matrix.

Note. Even if the Hermite normal form of A is unique, the Hermite multiplier might not
be. This is discussed further after definition 3.17.

The column Hermite normal form can be computed in polynomial time [20]. We
use the Diophantine Python package [8], which is an implementation of the method
found in [20]. The reason it is easy to compute the Hermite normal form is that it is
essentially calculating the highest common factors of integers, which can be done via
Euclid’s algorithm. However, this naive implementation results in coefficient explosion -
the entries of the matrices become prohibitively large - and is not practical [9, p.69]. Hence
the need for the LLL algorithm described in [20].

We introduce some non-standard terminology that will be used extensively in sections 4
and 5, taken from [26, Section 2.1].

Definition 3.17. Let A ∈ Mr×n(Z) have full row rank, with r < n, and V be a Hermite
multiplier of A. Then AV = [H 0] where H ∈ Mr×r(Z) is a non-negative non-singular
lower-triangular matrix. Then we can partition V and W = V −1 as follows:

1. V = [Vi Vn] with Vi ∈Mn×r (Z) and Vn ∈Mn×(n−r) (Z);

2. W = [Wu

Wd
] with Wu ∈Mr×n (Z) and Wd ∈M(n−r)×n (Z).

Since the Hermite multiplier is non-unique, different algorithms will give different
Hermite multipliers. That is, we may perform any column operations using the columns
of Vn and find another Hermite multiplier for A. In order to fix the Hermite multiplier
in general, we introduce the normal Hermite multiplier [26, Proposition 2.3], which
essentially puts Vn in Hermite normal form.

For the rest of this section, let A ∈Mr×n(Z) be a full row rank matrix.
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Definition 3.18 ([26, Section 2.2]). Let V ∈Mn×n(Z) be a Hermite multiplier of A such that
AV = [H 0] with H ∈Mr×r(Z). V is said to be the normal Hermite multiplier of A if:

1. V = [Vi Vn] with Vn ∈Mn×(n−r)(Z) in column Hermite normal form.

2. If i1 < . . . < i(n−r) are the pivot rows of Vn then

0 ≤ (Vi)ijk < (Vn)ijj

for 1 ≤ k ≤ r. In particular, Vi is reduced with respect to the pivot rows of Vn.

Theorem 3.19 ([26, Proposition 2.3]). 1. A Hermite multiplier V of A is unique up to mul-
tiplication on the right by matrices of the form

[Ir 0
B U

]

where U ∈M(n−r)×(n−r)(Z) is unimodular and B ∈M(n−r)×r(Z).

2. The normal Hermite multiplier of A exists and is unique.

Lemma 3.20 ([9, Proposition 2.4.9]). If V is a Hermite multiplier of A, then the last n − r
columns of V form a basis for the kernel of A.

Lemma 3.21 ([26, Section 2.2]). For a matrixA ∈Mr×n(Z), the Hermite normal form and normal
Hermite multiplier can be extracted from the column Hermite normal form decomposition of one
(n + r) × n matrix.

Proof. Let V = [Vi Vn] be a Hermite multiplier of A, so [H 0] = AV for H ∈Mr×r(Z) full
rank. Then

[A
In

] [Vi Vn] = [AVi AVn

Vi Vn
] = [H 0

Vi Vn
] . (11)

It follows that equation (11) is in Hermite normal form if and only if V is the normal
Hermite multiplier.

Hence H and V can be found by a single Hermite normal form decomposition of

[A
In

].

3.4 Rational Invariant Theory

In this section we show how, given a scaling matrix, we can calculate a generating set of
rational invariants and re-write any invariant function in terms of them. In doing so, we
draw on results from rational invariant theory [12, 25].

Definition 3.22 ([25, Definition 2.1]). Let G be an affine algebraic group acting on an affine
variety X . Then f ∈ k[X] is said to be invariant if λ ⋅ f = f for all λ ∈ G.

The set of G-invariants is:

k[X]G ∶= {f ∈ k[X] ∣ λ ⋅ f = f ∀λ ∈ G} .

This set is a subalgebra of k[X] and is called the invariant ring of G.
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If in addition X is irreducible, a rational invariant is an element f ∈ k(X) such that
λ ⋅ f = f for all λ ∈ G. The set of rational invariants is:

k(X)G ∶= {p
q
∈ k(X) ∣ p, q ∈ k[X] and

λ ⋅ p
λ ⋅ q

= p
q
∀λ ∈ G} .

This set is a subfield of k(X).

We now return our attention to the action of the torus TA.

Definition 3.23. For f = ∑u∈Zn auzu ∈ k[z] we define the support of f to be
Yf = {u ∈ Zn ∣ au ≠ 0}. Note that ∣Yf ∣ < ∞ by definition of the polynomial ring.

Lemma 3.24 ([26, Lemma 4.1]). Let f = p
q ∈ k(z)TA with p, q ∈ k[z] coprime. Then there exists

u ∈ Zn such that:

p = ∑
v∈kerA∩Zn

avz
u+v and q = ∑

v∈kerA∩Zn

bvz
u+v.

Proof. As f ∈ k(z)TA it follows that

(λ−1 ⋅ f)(z) = f(λ ⋅ z) = p(λ ⋅ z)
q(λ ⋅ z)

= p(z)
q(z)

= f(z)

for λ ∈ TA. Hence p(λ ⋅ z)q(z) = p(z)q(λ ⋅ z) in k(λ)[z]. As p, q are coprime, we must have
that p(z) divides p(λ ⋅ z). Since these polynomials have the same degree in the zi, we have
that p(λ ⋅ z) = χ(λ)p(z) for some χ(λ) ∈ k(λ). It also follows that χ(λ)q(z) = q(λ ⋅ z).

Now, for our specific group action:

p(λ ⋅ z) = p(λA ∗ z) = ∑
w∈Zn

awλ
Awzw.

So if p(λ ⋅ z) = χ(λ)p(z) then we must have that Au = Av for any u, v in the support of p.
Fix u in the support of p, define χ(λ) = λAu. Then for w in the support of p, we have

that A(w − u) = 0 so v = (w − u) ∈ kerA for each w in the support of p as required.
Then

q(λ ⋅ z) = ∑
w∈Zn

bvλ
Avzv = λAu ∑

v∈Zn

bvz
v

so Au = Av for v in the support of q. Then, as before, there exists v = w − u ∈ kerA such that
w = u + v for all w in the support of q.

Example 3.25. Let A = [1 1], so v = ( 1
−1

) generates kerA ∩Z2 over Z. Then f = z1+z2
z1

is a

rational invariant. Picking u = (1
0
) we see that f = z1+z2

z1
= zu+zu−v

zu .

Lemma 3.26 ([26, Theorem 4.2]). Let V = [Vi Vn] be a Hermite multiplier of A ∈ Mr×n(Z)

and W = V −1 = [Wu

Wd
].

1. The n − r components of g = [z1 z2 . . . zn]
Vn give a generating set of k(z)TA , the set of

rational invariants.
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2. Any rational invariant f ∈ k(z)TA can be written in terms of the components of g by
substituting:

z = [z1 z2 . . . zn] ↦ gWd

In particular f(z) = f ((zVn)Wd).

Proof. First we show the components of g are rational invariants, then we show any
invariant can be written in terms of them.

The columns of Vn span kerA by lemma 3.20, so (λA ∗ z)Vn = λAVn ∗ zVn = zVn . Hence
the components of g are rational invariants.

Since In = Vi Wu +Vn Wd, for v ∈ Zn we have zVi Wu +Vn Wd = z where z = [z1 z2 . . . zn]
is a vector of the indeterminates. Take v ∈ kerA. By lemma 3.20 the columns of Vn form a

basis for kerA. Hence v = Vn u for some u ∈ Zn−r. As In =WV = [Wu Vi Wu Vn

Wd Vi Wd Vn
] we have

that Wu v = Wu Vn u = 0. Hence it is also true that zv = zVn Wd v = gWd v as kerA ⊂ ker Wu.
Now take f = p

q ∈ k(z)TA with p, q ∈ k[z] coprime. By lemma 3.24 there exists u ∈ Zn
such that

p = ∑
v∈kerA∩Zn

avz
u+v and q = ∑

v∈kerA∩Zn

bvz
u+v.

Working in k(z) we see that

p(z) = zu ∑
v∈kerA∩Zn

av(zVn Wd)v and q(z) = zu ∑
v∈kerA∩Zn

bv(zVn Wd)v

which implies

f(z) = p(z)
q(z)

= p(z
Vn Wd)

q(zVn Wd)
= p(g

Wd)
q(gWd)

= f(gWd).

Example 3.27. Consider f ∈ k(z0, . . . , zn) and A = [1 1 . . . 1]. Then A has Hermite
multiplier

V = [ Vi Vn ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ 0
1 −1 −1 ⋯ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

so the rational functions
[z0, . . . , zn]

Vn = [ z0zn ,
z1
zn
, . . . , zn−1

zn
]

generate the set k(z)TA .
We have found is a generating set for the function field k (Uzn) of Uzn ⊂ Pn, the subset of

projective space where zn ≠ 0 [40, Section 9.3]. This is because f is a well defined rational
function on Uzn if and only if f(λz0, . . . , λzn) = f(z0, . . . , zn) for λ ∈ k∗, hence our choice
of A. We also have re-write rules for any function that is well defined on Uzn in terms of
these invariants.

3.5 Determining Maximal Scaling Actions

In this subsection, we consider the following problem: given a set of rational functions
{f1, f2, . . . , fm} ⊂ k (z1, z2, . . . , zn), find a maximal r ∈ N and corresponding A ∈ Mr×n(Z)
such that {fi}mi=1 are invariant under the TA action by A. We follow the methodology of
[26, Section 5].
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Example 3.28. Let k = R. Consider the rational function f = z1+z2
2

z3
. Again, suppose k∗ acts

on k[z1, z2, z3] by A = [a1 a2 a3] such that f is invariant.
Then we must have:

(λ.f)(z1, z2, z3) = f(λ−1.(z1, z2, z3))
= f(λ−a1z1, λ

−a2z2, λ
−a3z3)

= λ
−a1z1 + λ−2a2z2

2

λ−a3z3

= z1 + z2
2

z3

= f.

Letting µ = 1
λ and rearranging gives:

µa3z1z3 + µa3z2
2z3 − µa1z1z3 − µ2a2z2

2z3 = 0

By viewing this equation as a polynomial in µ it is clear that f is invariant if and only
if a1 = a3 and a3 = 2a2. These equations describe a one dimensional space spanned by
[2 1 2], which is the maximal scaling matrix for this equation.

Definition 3.29. Let u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Zn, with u ≠ v. Define a total
order < on Zn:

u < v⇔∣u1∣ < ∣v1∣, or
∣u1∣ = ∣v1∣, ∣u2∣ < ∣v2∣, or
⋮
∣ui∣ = ∣vi∣ ∀i = 1, . . . , n − 1 and ∣un∣ < ∣vn∣,

where the < above is the usual ordering on Z. In other words, we compare the magnitude
of entries, starting from the left.

Definition 3.30. Let f = p
q ∈ k(z) with p = ∑u∈Nn auzu, q = ∑v∈Nn bvzv ∈ k[z] coprime. Note

2 ≤ N = ∣Yp ∪ Yq ∣ < ∞. Pick w ∈ Yq minimal with respect to <. Define the exponent matrix of f
to be Kf ∈M(N−1)×n(Z), the matrix with columns made up of v −w for v ∈ (Yp ∪ Yq) ∖ {w}.

Note. If f ∈ k[z] then we take q = 1 and w = (0, . . . ,0)T .

Example 3.31. 1. f = z1z2
1 , w = (0,0)T , Kf = [1

1
].

2. f = z1z2+z3
z2z3

, then q = z2z3 = (z1, z2, z3)w where w = (0,1,1)T . So Kf =
⎡⎢⎢⎢⎢⎢⎣

1 0
0 −1
−1 0

⎤⎥⎥⎥⎥⎥⎦
.

3. f = z1z2+z3z4
z1+z4 , Yq =

⎛
⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

so we pick w = (0,0,0,1)T . Kf =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 0 0
0 1 0
−1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Lemma 3.32 ([26, Section 5]). Let A ∈Mr×n(Z), f ∈ k(z). Then f is a rational invariant with
respect to TA if and only if:

AKf = 0.
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Proof. Let f = p
q ∈ k(z) with p = ∑u∈Nn auzu, q = ∑v∈Nn bvzv ∈ k[z] coprime.

⇒ By lemma 3.24, we have immediately have that u − v ∈ kerA for u, v ∈ Yp ∪ Yq.
⇐ Then pick w in the support of q minimal with respect to < defined in definition 3.29.

Note AKf = 0 if and only if A(u −w) = 0 for all u ∈ Yp ∪ Yq. Hence

(λ−1.f)(z) = f(λA ∗ z)

= ∑u∈Nn auλAuzu

∑v∈Nn bvλAvzv

= ∑u∈Nn
auλAuzu

λAw

∑v∈Nn
bvλAvzv

λAw

= ∑u∈Nn auλA(u−w)zu

∑v∈Nn bvλA(v−w)zv

= ∑u∈Nn auzu

∑v∈Nn bvzv

= f(z).

Now that we have found necessary and sufficient conditions for a rational function f
to be invariant with respect to TA, we use the following lemma to find a maximal A.

Lemma 3.33 ([26, Proposition 5.1]). Let K ∈Mn×m(Z) and U ∈Mn×n(Z) unimodular such that

UK = [K0

0
]

is in row Hermite normal form, with K0 ∈M(n−r)×m(Z) of full row rank, so that there are exactly
r zero rows. Let A be the last r rows of U . Then

1. AK = 0;

2. the column Hermite normal form of A is [Ir 0];

3. an integer matrix B satisfies BK = 0 if and only if there exists an integer matrix M such
that B =MA.

Proof. 1. UK = [∗
A
]K = [K0

0
].

2. Note In = UU−1 = [∗
A
]U−1. As U−1 is unimodular, acting on the right of A, we have

that A is equivalent to [0 Ir] by elementary column operations. Permuting the
columns shows that the column Hermite normal form of A is [Ir 0].

3. ⇒ A Z-basis for the left kernel of K (which is defined as {x ∈ Zn ∣ xK = 0}) is given
by A, by taking the row version of lemma 3.20. Hence if BK = 0, each row of B is a
Z-linear combination of the rows of A. That is, there exists an integer matrix M such
that B =MA.

⇐ BK =MAK = 0.

25



Corollary 3.34. Let A be as in lemma 3.33.

1. A has full row rank.

2. r is maximal and A is a maximal scaling matrix. This is because any other matrix B =MA
such that BK = 0 will have row rank less than or equal to r.

Example 3.35. We revisit example 3.28 and consider the rational function: f = z1+z2
2

z3
.

Then Kf =
⎡⎢⎢⎢⎢⎢⎣

1 0
0 2
−1 −1

⎤⎥⎥⎥⎥⎥⎦
. The row Hermite normal form decomposition is given by:

⎡⎢⎢⎢⎢⎢⎣

1 0 0
−1 0 −1
−2 −1 −2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0
0 2
−1 −1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0

⎤⎥⎥⎥⎥⎥⎦
.

Hence A = [−2 −1 −2] describes a maximal scaling action on k3 under which f is
invariant. This is equivalent to our previous answer, showing it is maximal.

Corollary 3.36 ([26, Section 5]). Let F = (f1, f2, . . . , fm) ∈ (k(z))m be a vector of rational
functions. Define K = [Kf1 Kf2 . . . Kfm]. Then

1. For any integer matrix B,

BK = 0⇔ fi ∈ k(z)TB ∀i = 1, . . . ,m.

2. Suppose U is a unimodular matrix such that UK = [K0

0
] is in row Hermite normal form

with exactly r zero rows. Let A be the last r rows of U . Then A is a maximal scaling matrix
for which F is invariant.

Example 3.37. 1. Define

F = (F1, F2) = (z1z2 + z3z4

z1z3

,
z1z4 + z3

z2 + z5

) .

Then

K = [ KF1 KF2 ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 0
0 1 0 0 1
0 −1 1 0 0
1 0 0 1 0
0 0 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The row Hermite normal form decomposition is given by:

UK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1
0 1 0 0 0
0 1 1 0 0
0 −1 −1 0 −1
−1 −2 −2 −1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 0
0 1 0 0 1
0 −1 1 0 0
1 0 0 1 0
0 0 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=H.
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Hence our maximal scaling action is given by A = [1 2 2 1 2]. Indeed for
λ ∈ TA = k∗:

λ−1 ⋅ (z1z2 + z3z4

z1z3

) = (λz1)(λ2z2) + (λ2z3)(λz4)
(λz1)(λ2z3)

= λ
3(z1z2 + z3z4)
λ3z1z3

= z1z2 + z3z4

z1z3

.

4 Scaling Symmetries of Dynamical Systems

In this section, we show how to find scaling symmetries of a dynamical system and
produce an equivalent reduced system, as in [26].

We consider systems of ordinary differential equations of the form

dz

dt
= G(t, z), (12)

where z = (z1(t), . . . , zn(t)) is a vector of functions of t and G = (G1(t, z), . . .Gn(t, z)) ∈
k (t, z)n is a rational map k×kn → kn. Since we are working with rational functions, we
can write

dz

dt
= G(t, z) = z ∗ F (t, z)

t
. (13)

We will mostly work with equation (13) as it turns out that the solutions are invariant with
respect to a TA-action if and only if F is a rational invariant of TA.

For the rest of this section, k = Q and T = (k*)r
. Define

dz

dt
∶= (dz1

dt
,
dz2

dt
, . . . ,

dzn
dt

) , z−1 ∶= (z−1
1 , z−1

2 , . . . , z−1
n ) .

For λ ∈ T and vectors x = (x1, . . . , xn) for which λ ⋅ xi is defined, define:

λ ⋅ (x1, . . . , xn) = (λ ⋅ x1, . . . , λ ⋅ xn) .

4.1 The Analytic Interpretation

As noted in [26, 12, Section 5.8], it is possible to find invariants and equivalent dynamical
systems without knowing any differential algebra. Let A = [a0 a1 . . . an] ∈M1×(n+1)(Z)
and TA act on k(t, z).

Definition 4.1. 1. We say (t̃, z̃1, . . . , z̃n) is a solution to equation (13) if

dz̃

dt̃
= G(t̃, z̃) = z̃ ∗ F (t̃, z̃)

t̃
. (14)

2. We say that TA defines a scaling symmetry for equation (13) if for all solutions (t, z)
of equation (13) and λ ∈ TA, λ−1 ⋅ (t, z) is also a solution.

Theorem 4.2 ([26, Section 6.1]). TA defines a scaling symmetry for equation (13) if and only if
Fi ∈ k(t, z)TA is a rational invariant for each i = 1, . . . , n.
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Proof. If (t, z) is a solution to equation (13) then λ−1 ⋅ (t, z) is a solution if:

d(λaizi)
d(λa0t)

= Gi (λa0t, λa1z1, . . . , λ
anzn)

= λ
ai

λa0

zi
t
Fi (λa0t, λa1z1, . . . , λ

anzn)

for each i = 1, . . . , n. Furthermore:

d(λaizi)
d(λa0t)

= λai dzi
dt

dt

d (λa0t)
= λai dzi

dt

1
d(λa0 t)
dt

= λ
ai

λa0

dzi
dt
. = λ

ai

λa0

ziFi(t, z)
t

.

Hence λ−1 ⋅ (t, z) is a solution to equation (12) if and only if Fi(t, z) = Fi (λ−1 ⋅ (t, z)) ∈
k (t, z)TA is a rational invariant.

4.2 The Differential Algebraic Geometry Interpretation

We consider how we might describe scaling symmetries using differential algebra. While
we reach the same conclusion as the analytic methods of [26, Section 6.1] and section 4.1
we do so by a novel approach which is more general and satisfactory.

For the rest of this subsection, let F be an ordinary differential field of characteristic
0, F ⊂ U be a differential field extension with t ∈ U , t′ = 1 and R = F{y1 . . . , yn}. Consider
Σ ⊂ R a finite set of differential polynomials and I = [Σ]. Definition 4.1 then inspires the
following definition.

Definition 4.3. The torus TA defines a scaling symmetry for Σ if the TA-action on An

descends to a well defined TA-action on the differential affine variety V(I).

4.2.1 Scaling Symmetries of Dependent Variables

To begin with, we restrict ourselves to torus actions that only act on the dependent
variables. Consider the system of differential equations

dz

dt
= G(z) (15)

given by rational Gi = Pi

Qi
∈ U(z) for Pi,Qi ∈ U[z1, . . . , zn] as in equation (12). This corre-

sponds to a differential ideal

I = [Q1(y)y′1 − P1(y), . . . ,Qn(y)y′n − Pn(y)] ◁ U{y1, . . . , yn} (16)

where y = (y1, . . . , yn) are differential indeterminates. Furthermore, let

V = V(I) ∩ {z ∈ An
U ∣ Qi(z) ≠ 0∀1 ≤ i ≤ n} ⊂ An

U

be the solutions of the system in Un and suppose V ≠ ∅. Note that V is isomorphic to an
affine differential variety by the same trick used repeatedly in example 3.2.

Lemma 4.4. Let TA = k∗ act non-trivially on An
U by A = [a1 . . . an]. In particular, for λ ∈ TA

and p ∈ V(I) we have: λ ⋅ (p1, . . . , pn) = (λa1p1, . . . , λanpn).
Then TA acts on V if and only if

Qi(λ ⋅ z) ≠ 0 ∀1 ≤ i ≤ n and G(λ ⋅ z) = G(λA ∗ z) = λA ∗G(z).
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Proof. The TA-action descends to an action on V if and only if λ ⋅(z1, . . . , zn) ∈ V for all
λ ∈ k∗ and all z ∈ V .
⇒ If TA acts on V , then for each i = 1, . . . , n:

1. Qi(λ ⋅ z) ≠ 0 as λ ⋅ z ∈ V ,

2. Qi(λ ⋅ z) (λaizi)′ − Pi(λ ⋅ z) = λaiQi(λ ⋅ z)z′i − Pi(λ ⋅ z) = 0.

Then
Gi (λ ⋅ z) =

Pi (λ ⋅ z)
Qi (λ ⋅ z)

= λaiz′i = λai
Pi (z)
Qi (z)

= λaiGi (z) (17)

as required.
⇐ As Qi(λ ⋅ z) ≠ 0 for each i, we have λ ⋅ z ∈ {z ∈ An

U ∣ Qi(z) ≠ 0∀1 ≤ i ≤ n}.
Also equation (17) holds, so

Qi(λ ⋅ z) (λaizi)′ −Pi(λ ⋅ z) = λaiQi(λ ⋅ z)z′i − λaiQi(λ ⋅ z)
Pi (z)
Qi (z)

= λaiQi(λ ⋅ z) (z′i −Gi(z)) = 0

which implies λ ⋅ z ∈ V(I).

Corollary 4.5. As V is infinite (it is non-empty, the action of TA is faithful and TA is an infinite
group), we know from commutative algebra that TA = k∗ acts on An

U if and only if λ ⋅G = λ−A ∗G
for all λ ∈ TA.

Corollary 4.6. TA acts on V if and only if for each i = 1, . . . , n:

λ ⋅ Fi = λ ⋅ (
tGi

zi
) = λ

−aitGi

λ−aizi
= tGi

zi
= Fi ∈ U(yi)TA .

That is λ ⋅ F = F is invariant.

Example 4.7. Consider the system

d(z1, z2)
dt

= (z1 (1 − z1

z2

) , z2 (1 + z1

z2

)) . (18)

We know by corollary 4.6 and the methods of section 3.5 that T = k∗ acts on z1, z2 by
A = [1 1]. LetF = C and let U = F(t). We have P1 = z1(z2−z1), P2 = z2(z2+z1),Q1 = Q2 = z2,
so the system corresponds to differential ideal:

I = [y2y
′
1 − y1(y2 − y1), y2y

′
2 − y2(y2 + y1), y2y3 − 1] ⊂ U{y1, y2, y3}

where we are considering the system embedded in A3 so that we can ensure the z2

coordinate does not vanish, making concrete the identification of V with an affine variety.
This is an alternative way of acting on the solutions, avoiding the region where Qi = 0, to
the methods of lemma 4.4.

Then it is easy to check that (z1, z2, z−1
2 ) ∈ V(I) implies (λz1, λz2, λ−1z−1

2 ) ∈ V(I) so the
action descends to an action on V . Furthermore

λ ⋅G1 =
λ ⋅ P1

λ ⋅Q1

= λ
−2z1(z2 − z1)
λ−1z2

= λ−1 P1

Q1

= λ−1G1, and λ ⋅G2 = λ−1G2.
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4.2.2 General Case

The differential algebra we have used so far does not allow us to act on t, since there is
no way to act on the derivation in the manner required to make sense of definition 4.1.
In order to generalise and consider actions on the independent variable, we employ a
trick from [26, Section 6.2]. We introduce a dummy variable z0(t) which will behave like
a scaled version of our time variable: z0(t) = µt for some constant µ ∈ (F∆)∗. The z0 we
desire is characterised by the differential equation d

dt
( z0
t
) = tz′0−z0

t2 = 0.
Since dzi

dz0
= dzi

dt
dt
dz0

= z′i
z′0

, instead of considering the ideal in equation (16) we consider the
differential ideal:

J = [Q1(y0, y)y′1 − P1(y)y′0, . . . ,Qn(y0, y)y′n − Pn(y0, y)y′0, ty′0 − y0] ◁ U{y0, y1, . . . , yn} (19)

where we make the substitution t↦ y0 in each of the Gi.
By repeating the calculations in the proof of lemma 4.4 for J we see that TA acts on

V(J) if and only if for i = 1, . . . n:

Gi(λ ⋅ z̄) =
λai

λa0
Gi(z̄) ⇔ Fi(λ ⋅ z̄) = Fi(z̄). (20)

This agrees with theorem 4.2 and provides a rigorous geometric interpretation of scaling
symmetries.

Example 4.8. Consider the ODE:
dz

dt
= (z

t
)

2

(21)

which has solutions z(t) = t
ct+1 , where c is a constant. Let F = C ⊂ C(t) = U with t′ = 1.

The ideal J corresponding to equation (21) is given by J = [F,G], where s(t) is our
dummy independent variable, F (s, z) = s2z′ − z2s′ and G(s, z) = s′t − s.

Then for c ∈ C we have:

F (t, t

ct + 1
) = t2

(ct + 1)2
− ( t

ct + 1
)

2

= 0 and G(t, t

ct + 1
) = 0.

Furthermore, for λ ∈ C∗:

F (λt, λ t

ct + 1
) = λ3t2

(ct + 1)2
− λ( λt

ct + 1
)

2

= 0,

G(λt, λ t

ct + 1
) = λt − λt = 0

so (λt, λ t
ct+1

) ∈ V (Σ) ∀λ ∈ C∗.
Recall that y(t) = t

ct+1 is a function of t and that s = λt⇒ t = s
s′ . It follows that given a

solution (s, y ( ss′ )) of equation (21) and λ ∈ C∗:

(λs, λy ( λs

(λs)′
))

is also a solution to equation (21).
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4.3 Construction of Reduced Systems

4.3.1 Torus Action on Dependent Variables

In the previous section we saw that finding the maximal torus action leaving the solutions
to equation (13) invariant is equivalent to finding the maximal torus actions leaving {Fi}ni=1

invariant, where
dz

dt
= G(t, z) = z ∗ F (t, z)

t
.

Now we use symmetries of the system to find a simpler system, involving fewer
variables, such that there is a correspondence of solutions between the original and
reduced systems. In particular, if a torus group TA acts on the solutions of equation (13)
there will be rational invariants of this map, which will have dynamics of their own.
Rational invariant theory tells us we can re-write the {Fi}ni=1 in terms of these invariants.

Lemma 4.9 ([26, Lemma 6.1]). Suppose z(t) = [z1(t) z2(t) . . . zn(t)] is a vector of functions
in t and A ∈Mn×r(Z). Then:

d

dt
(zA) = zA ∗ ((z−1 ∗ dz

dt
) .A)

Proof. Suppose that a = [a1 . . . an]
T

is a column of A. Then by the product and chain
rule:

d(za)
dt

= d(z
a1
1 z

a2
2 . . . zann )
dt

= a1
za

z1

dz1

dt
+ . . . + an

za

zn

dzn
dt

= za ((z−1 ∗ dz
dt

) .a) .

Applying to each column of A gives the result.

Theorem 4.10 ([26, Theorem 6.3]). Consider a map F ∶ A×An → An that is invariant under the
group action of TA on An given by A ∈Mr×n(Z) (so TA acts trivially on t). Let V = [Vi Vn] be

the Hermite multiplier of A with inverse W = [Wu

Wd
].

1. If z(t) is a solution of dzdt =
z∗F (t,z)

t where none of the components vanish, then

[x(t) y(t)] = [zVi zVn]

is a solution to the dynamical system:

dy

dt
= y
t
∗ (F (t, yWd) .Vn) , (22)

dx

dt
= x
t
∗ (F (t, yWd) .Vi) . (23)

2. If y(t), x(t) are solutions to equations (22) and (23), respectively, and none of their compo-
nents vanish then

z(t) = [x(t) y(t)]W

is a solution to the dynamical system:

dz

dt
= z ∗ F (t, z)

t
.
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Proof. 1. Since F is TA-invariant, lemma 3.26 implies that

F (t, z) = F (t, (zVn)Wd) = F (t, yWd)

when considering F ∈ k(t)(z). Lemma 4.9 implies that

dy

dt
= d

dt
(zVn)

= zVn ∗ ((z−1 ∗ dz
dt

) .Vn)

= y ∗ (F (t, z)
t

.Vn)

= y
t
∗ (F (t, yWd).Vn) .

Similarly dx
dt =

x
t ∗ (F (t, yWd).Vi).

2. From equations (22) and (23) we know that:

d

dt
([x y]) = 1

t
[x y] ∗ (F (t, yWd)V ) .

5 Furthermore, W Vn = [ 0
In−r

] so zVn = y. Finally, by lemma 3.26, F (t, yWd) = F (t, z).

Bringing these facts together with lemma 4.9 gives:

dz

dt
= d

dt
([x y]W)

= [x y]W ∗ (([x y]−1 ∗ d

dt
([x y]))W)

= z ∗ (1

t
(F (t, yWd)V )W)

= z
t
∗ F (t, z) .

Equation (22) describes the reduced system under T; it expresses the dynamics of the
n − r rational invariants under the group action.

Note that given solutions to equation (22), it is possible to solve equations 23 by
integration:

x−1 ∗ dx
dt

= (F (t, yWd)Vi) ⇒ x = exp(∫ F (t, yWd)Vi dt) .

Example 4.11. Consider the system:

d(z1, z2)
dt

= (z1 (1 − z1

z2

) , z2 (1 + z1

z2

)) = (z1, z2)
t

∗ (t(1 − z1

z2

) , t(1 + z1

z2

)) . (24)

Note that we consider t (1 − z1
z2
) as a rational polynomial in z1, z2 over the field k(t).

Then we claim that the maximal T-action on z1, z2 is given by A = [1 1].
The corresponding Hermite multiplier and inverse are

V = [ 1 1
0 −1

] W = [ 1 1
0 −1

]
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which gives invariant and auxiliary variable:

y = z1

z2

, x = z1.

Then

dy

dt
= yF (1,

1

y
)Vn = y [1 − y y + 1] [ 1

−1
] = −2y2,

dx

dt
= xF (1,

1

y
)Vi = x [1 − y y + 1] [1

0
] = x(1 − y).

Solving gives:

y(t) = 1

2t + c0

x(t) = c1 exp(t − 1

2
log(2t + c0))

for some constants c0, c1. This leads us to the final solutions:

z1(t) = x(t) = c1 exp(t − 1

2
log(2t + c0)) ,

z2(t) =
x(t)
y(t)

= c1(2t + c0) exp(t − 1

2
log(2t + c0)) .

4.3.2 General Case

In this subsection we show that the construction in section 4.3.1 can be extended to torus
actions acting non-trivially on the independent variable, using the method of [26, Section
6.2].

Suppose we also have a torus TĀ acting kn+1 by

Ā = [A0 A] = [A0 A1 . . . AN] ∈Mr×(n+1)(Z)

that is a symmetry of the system. We know from section 4.1 that this is equivalent to
Fi(t, z) ∈ k(t, z)TĀ for each i = 1, . . . , n.

We introduce a new dependent variable z0(t) which will act like a scaled version of
the independent variable t. Define

z̄ = (z0, z1, . . . , zn), F̄ = [1 F ] (25)

and consider the dynamical system

dz̄

dt
= z̄
t
∗ F̄ (z̄) (26)

where F̄ (z̄(t)) = F̄ (z0(t), z(t)). Note the first equation of equation (26) is dz0
dt = z0

t which
has solution z0(t) = ct for some constant c.

Lemma 4.12 ([26, Section 6.2]). 1. If z(t) = (z1(t), . . . , zn(t)) is a solution of equation (13),
then z̄(t) = (t, z1(t), . . . , zn(t)) is a solution of equation (26).

2. Suppose z̄(t) = (z̄0(t), z̄1(t), . . . , z̄n(t)) is a solution of equation (26) and z̄0(t) = ct for c
nonzero. Then z(t) = (z̄1( tc), . . . , z̄n(

t
c)) is a solution of equation (13).
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Proof. 1. Immediate.

2. Let zi(t) = z̄i ( tc). Then for i = 1, . . . , n:

dzi(t)
dt

=
dz̄i( tc)
dt

=
z̄i( tc)
c tc

Fi (z̄0 (
t

c
) , z̄1 (

t

c
) , . . . , z̄n (

t

c
))

= zi(t)
t
Fi(t, z(t)).

Hence z(t) satisfies equation equation (13).

We obtain the general version of theorem 4.10 as a corollary.

Corollary 4.13 ([26, Theorem 6.5]). Consider a map F ∶ k×kn → kn that is invariant under the
group action of TĀ given by Ā ∈Mr×(n+1)(Z). Let V = [Vi Vn] be the Hermite multiplier of Ā

with inverse W = [Wu

Wd
]. Define F̄ = [1 F ] as above.

1. If z(t) = (z1(t), . . . , zn(t)) is a solution of dzdt =
z∗F (t,z)

t where none of the components vanish
and z̄(t) = (t, z1(t), . . . , zn(t)) then

[x(t) y(t)] = [z̄Vi z̄Vn] (27)

is a solution to the dynamical system:

dy

dt
= y
t
∗ (F̄ (yWd) ⋅Vn) (28)

dx

dt
= x
t
∗ (F̄ (yWd) ⋅Vi) , (29)

where the reduced system is given by equation (28).

2. Suppose y(t), x(t) are solutions to equations (28) and (29) respectively and none of their
components vanish. Let

[z̄0(t) z̄1(t) . . . z̄n(t)] = [x(t) y(t)]W (30)

where z̄0(t) = ct for some nonzero constant c. Then

z(t) = (z̄1 (
t

c
) , . . . , z̄n (

t

c
)) (31)

is a solution to
dz

dt
= z ∗ F (z)

t
.
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4.4 Parameter Reduction by Scaling Symmetries

The previous section gives a very general framework for dealing with symmetries of
specific systems of differential equations. In practice, mathematical models have many
parameters which are constant, but unknown. In the majority of these cases there is a
simpler algorithm for reduction than the method of section 4.3.2, which will only reduce
the number of parameters.

Suppose we have a dynamical model of some state variables z1, . . . , zq that depend on
the time t. Suppose their dynamics involve some constants c1, . . . , cp. The parametrised
dynamical system can be written:

dz

dt
= G(t, z, c) (32)

which can be trivially extended to the form of equation (12) by extending the system with
the equations dc

dt = 0 [26, Section 7]. Then the matrix A ∈Mr×n(Z), with n = 1+ q + p, defines
a scaling symmetry if and only if the map F (t, z, c) = t z−1 ∗G(t, z, c) is an invariant of the
action of TA.

The rest of this subsection assumes that the normal Hermite multiplier of A has the
form

V = [ 0 Iq+1 0
Vi Vv̄ Vc

] with inverse W =
⎡⎢⎢⎢⎢⎢⎣

Wu

Iq+1 0
Wd

⎤⎥⎥⎥⎥⎥⎦
. (33)

This assumption may seem opaque but it has a natural interpretation. The Iq+1 in the
top row of V is exactly saying that our new non-constant invariants y0, . . . , yq are given
by y0 = cu0t, yi = cuivi for i = 1, . . . , n, uj ∈ Zp. The zeros on the top row ensure that our
auxiliary variables and remaining invariants are only functions of the parameters. In
particular, our original dependent and time variables each appear in exactly one invariant
and we reduce only the number of parameters.

Let Vv̄ = [Vt Vv] where Vt is the first column of Vv̄. We can find the invariants explicitly

y = [t z c]Vn = [cVtt cVv ∗ z cVc] ,

giving us independent, dependent and constant invariants:

t = (c1, c2, . . . , cp)Vtt, (34)
z = (z1, z2, . . . , zq) = (c1, . . . , cp)Vv ∗ z, (35)
c = (c1, c2, . . . , cp−r) = (c1, . . . , cp)Vc . (36)

The auxiliary variables, which are constant under our assumptions, are given by:

x = cVi (37)

We also make the novel observation that if we only assume that the single invariant
involving t is cat for some scaling vector a ∈ Zp, then we can perform the t substitution
outlines in this section, followed by the dependent variable reduction of section 4.3.1. This
will avoid the introduction of a new variable by the general reduction of section 4.3.2.

Theorem 4.14 ([26, Section 7]). Let W be as above and

Wd = [Wt Wv Wc] (38)
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where Wt ∈M(p−r)×1(Z), Wv ∈M(p−r)×q(Z), Wc ∈M(p−r)×p(Z).
Then the reduced system is given by making the substitution

t↦ cWtt, z ↦ cWv ∗ z, c↦ cWc (39)

into equation (13).

Proof. Recall that by corollary 4.13 the reduced system is given by:

dy

dt
= y
t
∗ (F̄ (yWd)Vn) .

Then

yWd = [t z c]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 Iq 0
Wt Wv Wc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [cWtt cWv ∗ z cWc] .

Furthermore, every component after the first q + 1 components of F̄ are equal to 0, so

F̄ (yWd) .Vn = ( 1 F1 (yWd) . . . Fq (yWd) 0 . . . 0
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p−r times

)

is equal to F̄ (yWd) with the last r zeros removed. The last p − r variables of y are our new
invariant constants c, which we require to have derivative 0 as above, so we can forget
these equations. Hence we have the reduced system given by:

dȳ

dt
= ȳ
t
∗ (1 F1 (cWtt, cWv ∗ z, cWc) . . . Fq (cWtt, cWv ∗ z, cWc))

where ȳ = (t z).
The first equation is

dt

dt
= t

t
.

Dividing the other equations by dt
dt gives:

dz

dt
= z

t
∗ F (cWtt, cWv ∗ z, cWc) . (40)

Recalling that

d (cVv ∗ z)
d (cVtt)

= cVv

cVt
∗ dz
dt
, as c is constant, and

cVv ∗ z
cVtt

= cVv

cVt
∗ z

t
,

suffices to show that the direct substitution gives the reduced system.
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Example 4.15. Recall example 1.1:

ds

dt
= −k1e0s + (k1s + k−1)c =

s

t
(−k1e0st + k1sct + k−1ct

s
) = s

t
F1

dc

dt
= k1e0s − (k1s + k−1 + k2)c =

c

t
(k1e0st − k1sct + k−1ct + k2ct

c
) = c

t
F2

We order our variables by: (t, s, c, e0, k1, k2, k−1). Then by section 3.5:

KF1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
0 0 −1
0 1 1
1 0 0
1 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
0 0 −1 1 0 0 1
0 1 1 0 0 0 −1
1 0 0 0 0 0 1
1 1 0 1 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The row Hermite normal form decomposition is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 −1
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 0 0 1 0
−1 0 0 0 1 1 1
0 −1 −1 −1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1 −1 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

giving us the maximal scaling matrix, given by the bottom two rows of the multiplier:

A = [−1 0 0 0 1 1 1
0 −1 −1 −1 1 0 0

] .

The next step is to perform the column Hermite normal form decomposition of A. The
normal Hermite multiplier of A and its inverse is given by:

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 1 1 1 0
0 0 0 0 0 0 1
1 −1 1 −1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 1 1 1
0 −1 −1 −1 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can read off the invariants from the last 5 columns of V :

t = k−1t (41)

s = k1

k−1

s (42)

c = k1

k−1

c (43)

k = (k1, k2) = (e0k1

k−1

,
k2

k−1

) (44)

37



We can also read off the substitutions from the bottom 5 rows of W that give the
reduced system:

(t, s, c, e0, k1, k2, k−1) ↦ (t, s, c, k1,1, k2,1). (45)

Finally, the reduced system is given by:

ds

dt
= −k1s + (s + 1)c (46)

dc

dt
= k1s − (s + 1 + k2)c (47)

For more examples, see [26, Section 7].

4.4.1 Parameter Modification

We outline a novel way to generalise this method for cases when the normal Hermite
multiplier has the form:

V = [ 0 D 0
Vi Vv̄ Vc

] , where D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d0 0 . . . 0
0 d1 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . dq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

for di ∈ N>0. (48)

Suppose di > 1 for some 1 ≤ i ≤ q (the same method applies to d0, except replace zi with
t). Then we have an invariant zi = ca1

1 . . . c
ap
p z

di
i for some ai ∈ Z. Since the cj are parameters,

almost always real, we suppose we can pick a dith root.

Define c̃i =
⎧⎪⎪⎨⎪⎪⎩

di
√
ci if ai ≠ 0

ci if ai = 0,
and substitute ci ↦

⎧⎪⎪⎨⎪⎪⎩

c̃dii if ai ≠ 0

c̃i if ai = 0,
(49)

into our original system. This system will clearly be equivalent to our original system.
Under this substitution our old invariant will become (c̃a1

1 . . . c̃
ap
p zi)

di , so that the invariant
of our new system will be: c̃a1

1 . . . c̃
ap
p zi. The effect of this process is setting the entry di to 1,

so that after repeated application the normal Hermite multiplier has the form given in
equation (33).

Example 4.16. Consider the equation

dz

dt
= cz

3

t
,

where c is a constant, and the scaling matrix A = [0 1 −2] whose normal Hermite

multiplier is V =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 0 2
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

We make the substitution c↦ c̃2 and consider the system

dz

dt
= c̃

2z3

t

which has a corresponding scaling matrix A = [0 1 −1] and normal Hermite multiplier

V =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 0 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.
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By theorem 4.14, our original system is equivalent to the system:

dz

dt
= z3

t
.

4.5 Scaling Symmetries and Non-Dimensionalisation

Recall that there are many different ways to non-dimensionalise a system of differential
equations. This is explained by the non-uniqueness of the Hermite multiplier, which in
turn is explained by the fact that there are many different choices generators for the field
of invariants.

While the methods already discussed remove some ambiguity - through choice of the
normal Hermite multiplier - we still have to choose the ordering of our variables at the
outset. Given an order, the normal Hermite multiplier will try and normalise them using
later variables. This is exactly why we choose an order:

(independent variable,dependent variables,parameters)

since the dynamics of f(c)zi are much simpler than the dynamics of f(z) for f an arbitrary
rational function. This can be seen in example 4.15, where we act on the variables by k2

and k−1 - the last variables possible. Hence, if there are parameters in a system that are
natural to divide or multiply by, it is advisable to put them at the end.

Example 4.17. Continuing with example 4.15, the invariants s = k1

k−1
c, c = k1

k−1
s are not

particularly natural. If we choose to re-order the parameters, placing e0 at the end, the
method produces invariants

ŝ = s

e0

and ĉ = c

e0

.

5 Scaling Symmetries of PDEs

In this section, we extend the methods of Hubert and Labahn [26] to PDEs in an entirely
novel way. While there is literature on the analytic reduction of PDEs and work by Hubert
on its connection to differential algebra [22, 23, 24], it describes the differential algebra
generated by invariant solutions and invariant derivations - which is different and beyond
the scope of this work.

We will restrict ourselves to the reduction of parameters as in section 4.4 but only use
the theoretical framework of differential algebra. Initially, this will restrict us further to the
case where we can only act on the dependent variables, since differential algebra has no
natural way of acting on a derivation ∂, though it could be generalised using differential
ring isomorphisms (allowing a change in the derivations), or the trick from [26, Section
6.2] and 4.2.2, which we sketch at the end of this section.

We set up some notation of the rest of this section. We denote the independent variables
by x1, x2, . . . , xm. The corresponding derivations are ∆ = {∂x1 , ∂x2 , . . . , ∂xm} and we will
also denote them by ∂i ∶= ∂xi . Let k = Q, F be a differential field with derivations ∆, k ⊂ F
and xi ∈ F . Let R = F{y1, . . . , yn}. Suppose we are given a system of differential equations
described by:

Σ = {F1, . . . , Fk} ⊂ R . (50)

Let I = [Σ] be the differential ideal corresponding to our system and X = V(I) ⊂ An be the
differential variety of solutions. Finally let T = k∗ act on An by A = [a1 . . . an].

Our aim will be to find torus actions on X and show how these actions can be used to
reduce the number of parameters.
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5.1 Semi-Invariants

Definition 5.1 ([12, Remark 2.1.8]). Let a group G act on the affine n-space An over a field
k. Then f ∈ k[x1, . . . xn] is a semi-invariant if there exists χ ∶ G→ k∗ such that σ ⋅ f = χ(σ)f
for all σ ∈ G.

Lemma 5.2. Let f = ∑w∈Nn awzw ∈ k[z] be a semi-invariant of a TA-action. Then there exists
u ∈ Zn such that:

f = ∑
v∈kerA∩Zn

avz
u+v

where only finitely many av are non-zero.

Proof. Pick w in the support of f , so aw ≠ 0. If f = awzw then we are done, else f and awzw

are coprime. Then f
awzw

is a rational invariant so

f

awzw
= p
q

for p = ∑
v∈kerA∩Zn

avz
u+v, q = ∑

v∈kerA∩Zn

bvz
u+v coprime (51)

by lemma 3.24. Now f = awzw

q p ∈ k[z] so q must divide awzw. Hence awzw

q ∈ k[z] ⇒ awzw

q =
bzw

′ for some w′ ∈ Nn, b ∈ k. Absorbing this factor into p gives the required result.

5.2 Finding Torus Actions

We find torus actions leaving a finite subset of polynomials semi-invariant by modifying
the methods of [26, Section 5] and section 3.5.

Definition 5.3. A T = (k∗)r-action on An induces a map on the differential coordinate ring.
For λ ∈ T, we have

(λ ⋅θyi)(z) = θyi ○λ−1(z) = θyi (λ−1 ⋅ z) = θ(λ−a1i
1 . . . λ−arir zi) = λ−a1i

1 . . . λ−arir θ(zi) = θ (λ ⋅ yi) (z)
(52)

for 1 ≤ i ≤ n as ∂j λk = 0. Note the group action commutes with derivations.
In this way, every monomial m = ∏k

i=1 θiyi for θiyi ∈ ΘY has a weight vector am such that

λ−1 ⋅m = λamm.

Then F ∈ R is a semi-invariant of the TA-action if each of its monomials has the same
weight vector, so that the scaling action can be factored out. In particular, there exists
a ∈ Zn such that λ−1 ⋅ F = λaF .

Lemma 5.4. If {Fi}ki=1 are semi-invariant with respect to the T-action, then the action descends to
a well-defined action on X .

Proof. Let z = (z1, . . . , zn) ∈X , λ ∈ T. Then

Fi (λ ⋅ z) = (λ−1 ⋅ Fi)(z) = χ(λ−1)Fi(z) = 0

for each i. Therefore λ ⋅ z ∈X as required.

The reverse implication does not hold, even in the algebraic case.
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Example 5.5. Consider the polynomials F1 = x+y−z,F2 = z ∈ k[x, y, z]. There exists a torus
action given by A = [1 1 0] on the solution set V(⟨F1, F2⟩) = {(x,−x,0) ∈ A3 ∣ x ∈ k} ⊂ A3.
However, the T-action does not factor:

(λ−1 ⋅ F1)(x, y, z) = (λx) + (λy) − z ≠ χ(λ)F1(x, y, z)

for any χ ∶ T→ k∗, so F1 is not a semi-invariant.

Now we show how to find T-actions leaving Σ semi-invariant. While this will not find
all of the possible T-actions on X , it will find some of them.

Definition 5.6. Consider T = (k∗)n acting on An by A = In. Let

F =
k

∑
i=1

rimi ∈ R,

where mi is a product of differentials, ri ∈ F .
Let M = {ami

∈ Nn ∣mi a monomial appearing in F} be the set of weight vectors and
pick w ∈M minimal with respect to the ordering given in definition 3.29. We define the
exponent matrix of F to be the matrix K̄F with columns v −w for v ∈M ∖ {w}.

Example 5.7. 1. F = y1y2 − ∂2
1 y1 has monomial weights ((1

1
) ,(1

0
)) so K̄F = [0

1
].

2. F = y1 ∂2 y2−∂2
1 y1y2

3 +y2y3 has monomial weights
⎛
⎜
⎝

⎛
⎜
⎝

1
1
0

⎞
⎟
⎠
,
⎛
⎜
⎝

1
0
2

⎞
⎟
⎠
,
⎛
⎜
⎝

0
1
1

⎞
⎟
⎠

⎞
⎟
⎠

so K̄F =
⎡⎢⎢⎢⎢⎢⎣

1 1
0 −1
−1 1

⎤⎥⎥⎥⎥⎥⎦
.

Lemma 5.8. Let A ∈Mr×n(Z), F ∈ R. Then F is a semi-invariant with respect to the T-action by
A if and only if:

AK̄F = 0.

Proof. Suppose that F has order p (order of the highest derivative in F ). Consider F as a
polynomial in the ring S = F[Θ (p) z], where the action of T on F ∈ S is inherited from the
action on the differential coordinate ring. Let m be the lowest order monomial appearing
in F , with respect to the ordering in definition 3.29.

Since K F
m
= [K̄F 0], it is clear that AK̄F = 0⇔ F

m is a rational invariant, by lemma 3.32.
It is also clear that this happens if and only if F is a semi-invariant, since m is a monomial.

Corollary 5.9. Let U ∈Mn×n(Z) be a row Hermite normal multiplier, such that the last r rows of
UK̄F are 0. Let A be the last r rows of U . Then:

1. A has full row rank.

2. r is maximal and A is a maximal scaling matrix with F a semi-invariant.

Definition 5.10. Given a set of differential polynomials Σ, we can form K̄Fi
for each Fi ∈ Σ

and define the exponent matrix of the system:

K̄Σ = [K̄F1 . . . K̄Fk
] . (53)

We can then find the maximal scaling matrix A such that the Fi are semi-invariant by
performing a Hermite normal form decomposition, exactly as we did for the rational
invariant case in corollary 3.36.
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Now that we can find the maximal action leaving {Fi}ki=1 semi-invariant, we briefly
discuss the choice of {Fi}ki=1. Since we are really interested in acting on V(I), we can choose
any set of generators {Gi}k1

i=1 for I to be semi-invariant. The optimum choice remains an
open problem and is not discussed in-depth here.

One approach is to compute a Groebner basis (forgetting the differential structure) or
compute characteristic sets using an elimination ranking. This would certainly find the
torus action in example 5.5.

Given a system of differential equations where the variables and parameters have
units, we can immediately write down a scaling matrix. This comes from the arbitrary
choice of unit for fundamental quantities, like time or distance. Each fundamental unit
induces a scaling action on the quantities that are written in terms of it. This is actually
the beginning of the proof for the Buckingham Pi Theorem [46, Section 5].

Example 5.11. Consider question 1 from problem sheet 2 of the Part B course [5], modelling
the population of fish near a fishing port. The system is given by

∂tU = rU (1 − U

K
) −EU +D∂2

xU

for constants r,K,E,D, where U(t, x) the number of fish.
Let F =K ∂tU − rU(K −U)+KEU −KD∂2

xU and pick a variable order: (U, r,K,E,D).
We calculate the maximal scaling matrix by performing a row Hermite normal form
decomposition of the exponent matrix K̄F :

U.K̄F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
1 1 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We have found a one dimensional scaling action given by A = [1 0 1 0 0].

5.3 Construction of Reduced Systems

We show that we can perform similar substitutions to theorem 4.14 to reduce the number
of parameters.

Suppose we have a system with dependent variables z = (z1, . . . , zq) and parameters
c = (c1, . . . , cp). In particular, Σ = {F1, . . . , Fm} ⊂ F {z1, . . . , zq, c1, . . . , cp} / [∂i cj], as ∂i cj = 0
for 1 ≤ i ≤m and 1 ≤ j ≤ p. Let n = p + q.

5.3.1 Scaling Actions on Dependent Variables

Suppose that we have a scaling matrixA ∈Mr×n(Z), acting only on the dependent variables
of the solution set X . Assume that the normal Hermite multiplier of A has the form

V = [ 0 Iq 0
Vi Vv Vc

] with inverse W =
⎡⎢⎢⎢⎢⎢⎣

Wu

Iq 0
Wv Wc

⎤⎥⎥⎥⎥⎥⎦
. (54)

Equation (54) has a natural interpretation, as in section 4.4: our invariants are given by
cuizi and cvj for some ui, vj ∈ Zp. Under this assumption, we will only reduce the number
of parameters.
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By considering the algebraic ring F [z1, . . . , zq, c1, . . . , cp] and applying the methods of
section 4.4, we can read off candidate invariants:

z = (z1, z2, . . . , zq) = (c1, . . . , cp)Vv ∗ z (55)
c = (c1, c2, . . . , cp−r) = (c1, . . . , cp)Vc . (56)

The auxiliary constants are
k = cVi . (57)

Lemma 5.12. Let F ∈ R be a semi-invariant differential polynomial of the TA-action. Then we
can rewrite F in terms of z, c and their derivatives up to a multiple of constants. In particular

caF (z, c) = F (((z, c)Vn)
Wd) = F ((z, c)Wd)

for some scaling vector a ∈ Zp.

Proof. The idea of the proof is to pick a Hermite multiplier such that the basis of invariants
has a nice form and use lemma 3.26. We will prove the lemma for a concrete, illustrative
example and note that it generalises easily. Recall F (U, r,K,E,D) =K ∂tU − rU(K −U) +
KEU −KD∂2

xU , A and V as in example 5.11.
The highest order of F is 2, coming from the differential ∂2

xU . We consider the algebraic
ring:

F [Θ(2){U, r,K,E,D}] = F[U, r,K,E,D,Ut, Ux, Utt, Utx, Uxx]

whose field of fractions will contain every rational differential polynomial of order 2.
The action of T on the original variables extends naturally to the matrix:

A(2) = [1 0 1 0 0 1 1 1 1 1]

as ∂i λ ⋅U = λ ⋅ ∂iU for λ ∈ T. We first reduce the 1s in the columns corresponding to the
θU , by subtracting the column of U , which gives our first sequence of column actions

described by multiplication on the right by V1 = [I5 −M
0 I5

], where M is the 5 × 5 matrix

with top row 1 and other rows 0.

Then A(2)V1 = [A 0] and we can multiply on the right by the matrix V2 = [V 0
0 I5

] to

put it in column Hermite normal form.
Thus AV1V2 is in Hermite normal form, where

V1V2 = [I5 −M
0 I5

] [V 0
0 I5

] = [V −M
0 I5

] .

Since V has the form assumed in equation (33) we can add the columns corresponding
to the U -invariant to the columns of the θU -invariants again, eliminating the −1 top row
while scaling θU by the same constants as U . Hence our final Hermite multiplier for A(2)
is

V1V2 [
I5 M
0 I5

] = [V VM −M
0 I5

] .

Recalling the torus action defined in equation (52), by lemma 3.26 we have that

{θg ∣ θ ∈ Θ(2), g ∈ (U, r,K,E,D)Vn}
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form a generating set for the rational invariants of order 2, as desired. In particular, it
suffices to consider the action on the indeterminates (of 0th order), find a generating set of
the rational invariants and evaluate the differential polynomial F at these.

Furthermore, since any semi-invariant f gives us a rational invariant by dividing by a
monomial appearing f , F

KEU has the form of 3.26 and we have the desired re-write rule.
This substitution applied to semi-invariants is correct up to some constants, by lemma 5.2;
the scaling vector of the constants will be exactly u appearing in lemma 5.2.

Returning to our example,

F (((U, r,K,E,D)Vn)
Wd) =F (U

K
, r,1,E,D)

=∂t (
U

K
) − r U

K
(1 − U

K
) +E U

K
−D∂2

x (
U

K
)

=K−2 (K ∂tU − rU(K −U) +KEU −KD∂2
xU)

=K−2F.

This proof generalises easily enough by considering higher order rings F [Θ(N)z, c]
and performing more column operations for further dependent variables.

Theorem 5.13. Consider the substitution:

z ↦ cWv ∗ z, (58)
c↦ cWc (59)

and let Gi(z, c) = Fi(cWv ∗ z, cWc).

1. If (z, c) ∈ V(Fi) is a solution to the original system, then (z, c) = (z, c)Vn ∈ V(Gi) is a
solution of the reduced system.

2. If (z, c) ∈ V(Gi) is a solution to the reduced equations, then (z, c) = (k, z, c)W ∈ V(Fi) is a
solution to the original system, where k is a vector of arbitrary constants.

Proof. 1. By lemma 5.12, there exists a ∈ Zp such that:

Gi(z, c) = Fi (cWv ∗ z, cWc) = Fi ((z, c)Wd) = Fi (((z, c)Vn)
Wd) = caFi(z, c) = 0.

2. Consider F as a polynomial in F[Θ(N)z] for sufficiently large N and denote the
extended action of A by A′, with corresponding V ′ and W ′. There exists u ∈ Zn such
that:

F = ∑
v∈kerA′∩Zn

avz
u+v,

where only finitely many av are non-zero, by lemma 5.2. Recalling that kerA′ ⊂
ker Wu

′ we see that

F (cWu ∗ z) = ∑
v∈kerA∩Zn

av (cWuz)u+v

= ∑
v∈kerA∩Zn

avc
Wu(u+v)zu+v

= ∑
v∈kerA∩Zn

avc
Wu uzu+v

= cWu u ∑
v∈kerA∩Zn

avz
u+v

= cWu uF (z).

44



Therefore:

Fi(z, c) = Fi ((k, z, c)W ) = Fi (kWu ∗(z, c)Wd) = kWu uFi ((z, c)Wd) = kWu uGi(z, c) = 0.

5.3.2 General Case

If we wish to act on independent variables as well as dependent variables, we can intro-
duce dummy variables that behave like scaled versions of our independent parameters, as
in section 4.2.2. In particular, if we have independent variables xi and derivations ∂i, then
we introduce new independent variables x̃i, such that x̃i = λxi for some constant λ ∈ F .
We do this by adding xi ∂i x̃i − x̃i and ∂j x̃i to Σ for i ≠ j.

We then substitute
xi ↦ x̃i, ∂i zj ↦

∂i zj
∂i x̃i

into our original Fi and clear the fractions introduced by the ∂i x̃i to create new differential
polynomials F̃i. Let this new system of equations be denoted

Σ̃ = {F̃i ∣ 1 ≤ i ≤ k} ∪ {xi ∂i x̃i − x̃i ∣ 1 ≤ i ≤m} ∪ {∂j x̃i ∣ i ≠ j} .

Theorem 5.14. 1. If (z(x), c) is a solution to Σ then (z(x), c, x) is a solution to Σ̄.

2. Suppose (z(x), c, x̃) is a solution to Σ̄ where x̃ = µ ∗ x with µ a vector of non-zero constants.
Then (z (xµ) , c) is a solution to Σ.

Proof. Very similar to that of lemma 4.12.

Example 5.15. We return to example 5.11, except we also act on the independent variables.
Let s, y be the dummy variables of t, x respectively. Then we substitute s, y into F :

F ↦ K ∂tU

∂t s
− rU(K −U) +KEU −KD ∂2

xU

(∂x y)2

Let

G =K(∂tU)(∂x y)2 − rU(K −U)(∂t s)(∂x y)2 +KEU(∂t s)(∂x y)2 −KD(∂2
xU)(∂t s). (60)

We can then find T actions for which G is semi-invariant, where we choose the variable

order (s, y,U, r,K,E,D). We find A =
⎡⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 −1 −1
0 1 0 0 0 0 2
0 0 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎦
with normal Hermite

multiplier

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 1 0 0 2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 −1 0
−1 0 0 1 1 0 −1
0 0 0 0 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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which does not satisfy equation (54). This is because the only invariant of the second
transformation (corresponding to the second row) involving y and D is Ey2

D . We employ
the method of section 4.4.1, square E and D and consider the equivalent equation

G =K(∂tU)(∂x y)2 − rU(K −U)(∂t s)(∂x y)2 +KE2U(∂t s)(∂x y)2 −KD2(∂2
xU)(∂t s).

Now we have an action defined by A =
⎡⎢⎢⎢⎢⎢⎣

2 0 0 −2 0 −1 −1
0 1 0 0 0 0 1
0 0 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎦
which has normal

Hermite multiplier and inverse:

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 −1 0
−1 −1 0 2 1 0 −2
0 1 0 0 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 −2 0 −1 −1
0 1 0 0 0 0 1
0 0 1 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (61)

From this we can read off the invariants:

x1 =
s

E2
, x2 =

Ey

D
, z = U

K
, c = r

D2
(62)

and rewrite rules:

(s, y,U, r,K,E,D) ↦ (x1, x2, z, c,1,1,1). (63)

Our reduced system is given by the PDE:

(∂t z)(∂x x2)2 − c z(1 − z)(∂t x1)(∂x x2)2 + z(∂t x1)(∂x x2)2 − (∂2
x z)(∂t x1) = 0. (64)

Dividing through by (∂t x1)(∂x x2)2 we see that

∂t z

∂t x1

− c z(1 − z) + z− ∂2
x z

(∂x x2)2
= 0, (65)

hence the original system is equivalent to the reduced system

d z

d x1

− c z(1 − z) + z−d
2 z

d x2
2

= 0, (66)

which has three parameters fewer than the original.
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